This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If F is created by adding a single term ( FX ) = Y to G , where X is larger than any element of the support of G , then F is also a finitely supported function and it is assigned the value ( ( A ^o X ) .o Y ) +o z where z is the value of G . (Contributed by Mario Carneiro, 28-May-2015) (Revised by AV, 1-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cantnfs.s | |- S = dom ( A CNF B ) |
|
| cantnfs.a | |- ( ph -> A e. On ) |
||
| cantnfs.b | |- ( ph -> B e. On ) |
||
| cantnfp1.g | |- ( ph -> G e. S ) |
||
| cantnfp1.x | |- ( ph -> X e. B ) |
||
| cantnfp1.y | |- ( ph -> Y e. A ) |
||
| cantnfp1.s | |- ( ph -> ( G supp (/) ) C_ X ) |
||
| cantnfp1.f | |- F = ( t e. B |-> if ( t = X , Y , ( G ` t ) ) ) |
||
| Assertion | cantnfp1 | |- ( ph -> ( F e. S /\ ( ( A CNF B ) ` F ) = ( ( ( A ^o X ) .o Y ) +o ( ( A CNF B ) ` G ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cantnfs.s | |- S = dom ( A CNF B ) |
|
| 2 | cantnfs.a | |- ( ph -> A e. On ) |
|
| 3 | cantnfs.b | |- ( ph -> B e. On ) |
|
| 4 | cantnfp1.g | |- ( ph -> G e. S ) |
|
| 5 | cantnfp1.x | |- ( ph -> X e. B ) |
|
| 6 | cantnfp1.y | |- ( ph -> Y e. A ) |
|
| 7 | cantnfp1.s | |- ( ph -> ( G supp (/) ) C_ X ) |
|
| 8 | cantnfp1.f | |- F = ( t e. B |-> if ( t = X , Y , ( G ` t ) ) ) |
|
| 9 | onelon | |- ( ( B e. On /\ X e. B ) -> X e. On ) |
|
| 10 | 3 5 9 | syl2anc | |- ( ph -> X e. On ) |
| 11 | eloni | |- ( X e. On -> Ord X ) |
|
| 12 | ordirr | |- ( Ord X -> -. X e. X ) |
|
| 13 | 10 11 12 | 3syl | |- ( ph -> -. X e. X ) |
| 14 | fvex | |- ( G ` X ) e. _V |
|
| 15 | dif1o | |- ( ( G ` X ) e. ( _V \ 1o ) <-> ( ( G ` X ) e. _V /\ ( G ` X ) =/= (/) ) ) |
|
| 16 | 14 15 | mpbiran | |- ( ( G ` X ) e. ( _V \ 1o ) <-> ( G ` X ) =/= (/) ) |
| 17 | 1 2 3 | cantnfs | |- ( ph -> ( G e. S <-> ( G : B --> A /\ G finSupp (/) ) ) ) |
| 18 | 4 17 | mpbid | |- ( ph -> ( G : B --> A /\ G finSupp (/) ) ) |
| 19 | 18 | simpld | |- ( ph -> G : B --> A ) |
| 20 | 19 | ffnd | |- ( ph -> G Fn B ) |
| 21 | 0ex | |- (/) e. _V |
|
| 22 | 21 | a1i | |- ( ph -> (/) e. _V ) |
| 23 | elsuppfn | |- ( ( G Fn B /\ B e. On /\ (/) e. _V ) -> ( X e. ( G supp (/) ) <-> ( X e. B /\ ( G ` X ) =/= (/) ) ) ) |
|
| 24 | 20 3 22 23 | syl3anc | |- ( ph -> ( X e. ( G supp (/) ) <-> ( X e. B /\ ( G ` X ) =/= (/) ) ) ) |
| 25 | 16 | bicomi | |- ( ( G ` X ) =/= (/) <-> ( G ` X ) e. ( _V \ 1o ) ) |
| 26 | 25 | a1i | |- ( ph -> ( ( G ` X ) =/= (/) <-> ( G ` X ) e. ( _V \ 1o ) ) ) |
| 27 | 26 | anbi2d | |- ( ph -> ( ( X e. B /\ ( G ` X ) =/= (/) ) <-> ( X e. B /\ ( G ` X ) e. ( _V \ 1o ) ) ) ) |
| 28 | 24 27 | bitrd | |- ( ph -> ( X e. ( G supp (/) ) <-> ( X e. B /\ ( G ` X ) e. ( _V \ 1o ) ) ) ) |
| 29 | 7 | sseld | |- ( ph -> ( X e. ( G supp (/) ) -> X e. X ) ) |
| 30 | 28 29 | sylbird | |- ( ph -> ( ( X e. B /\ ( G ` X ) e. ( _V \ 1o ) ) -> X e. X ) ) |
| 31 | 5 30 | mpand | |- ( ph -> ( ( G ` X ) e. ( _V \ 1o ) -> X e. X ) ) |
| 32 | 16 31 | biimtrrid | |- ( ph -> ( ( G ` X ) =/= (/) -> X e. X ) ) |
| 33 | 32 | necon1bd | |- ( ph -> ( -. X e. X -> ( G ` X ) = (/) ) ) |
| 34 | 13 33 | mpd | |- ( ph -> ( G ` X ) = (/) ) |
| 35 | 34 | ad3antrrr | |- ( ( ( ( ph /\ Y = (/) ) /\ t e. B ) /\ t = X ) -> ( G ` X ) = (/) ) |
| 36 | simpr | |- ( ( ( ( ph /\ Y = (/) ) /\ t e. B ) /\ t = X ) -> t = X ) |
|
| 37 | 36 | fveq2d | |- ( ( ( ( ph /\ Y = (/) ) /\ t e. B ) /\ t = X ) -> ( G ` t ) = ( G ` X ) ) |
| 38 | simpllr | |- ( ( ( ( ph /\ Y = (/) ) /\ t e. B ) /\ t = X ) -> Y = (/) ) |
|
| 39 | 35 37 38 | 3eqtr4rd | |- ( ( ( ( ph /\ Y = (/) ) /\ t e. B ) /\ t = X ) -> Y = ( G ` t ) ) |
| 40 | eqidd | |- ( ( ( ( ph /\ Y = (/) ) /\ t e. B ) /\ -. t = X ) -> ( G ` t ) = ( G ` t ) ) |
|
| 41 | 39 40 | ifeqda | |- ( ( ( ph /\ Y = (/) ) /\ t e. B ) -> if ( t = X , Y , ( G ` t ) ) = ( G ` t ) ) |
| 42 | 41 | mpteq2dva | |- ( ( ph /\ Y = (/) ) -> ( t e. B |-> if ( t = X , Y , ( G ` t ) ) ) = ( t e. B |-> ( G ` t ) ) ) |
| 43 | 8 42 | eqtrid | |- ( ( ph /\ Y = (/) ) -> F = ( t e. B |-> ( G ` t ) ) ) |
| 44 | 19 | feqmptd | |- ( ph -> G = ( t e. B |-> ( G ` t ) ) ) |
| 45 | 44 | adantr | |- ( ( ph /\ Y = (/) ) -> G = ( t e. B |-> ( G ` t ) ) ) |
| 46 | 43 45 | eqtr4d | |- ( ( ph /\ Y = (/) ) -> F = G ) |
| 47 | 4 | adantr | |- ( ( ph /\ Y = (/) ) -> G e. S ) |
| 48 | 46 47 | eqeltrd | |- ( ( ph /\ Y = (/) ) -> F e. S ) |
| 49 | oecl | |- ( ( A e. On /\ B e. On ) -> ( A ^o B ) e. On ) |
|
| 50 | 2 3 49 | syl2anc | |- ( ph -> ( A ^o B ) e. On ) |
| 51 | 1 2 3 | cantnff | |- ( ph -> ( A CNF B ) : S --> ( A ^o B ) ) |
| 52 | 51 4 | ffvelcdmd | |- ( ph -> ( ( A CNF B ) ` G ) e. ( A ^o B ) ) |
| 53 | onelon | |- ( ( ( A ^o B ) e. On /\ ( ( A CNF B ) ` G ) e. ( A ^o B ) ) -> ( ( A CNF B ) ` G ) e. On ) |
|
| 54 | 50 52 53 | syl2anc | |- ( ph -> ( ( A CNF B ) ` G ) e. On ) |
| 55 | 54 | adantr | |- ( ( ph /\ Y = (/) ) -> ( ( A CNF B ) ` G ) e. On ) |
| 56 | oa0r | |- ( ( ( A CNF B ) ` G ) e. On -> ( (/) +o ( ( A CNF B ) ` G ) ) = ( ( A CNF B ) ` G ) ) |
|
| 57 | 55 56 | syl | |- ( ( ph /\ Y = (/) ) -> ( (/) +o ( ( A CNF B ) ` G ) ) = ( ( A CNF B ) ` G ) ) |
| 58 | oveq2 | |- ( Y = (/) -> ( ( A ^o X ) .o Y ) = ( ( A ^o X ) .o (/) ) ) |
|
| 59 | oecl | |- ( ( A e. On /\ X e. On ) -> ( A ^o X ) e. On ) |
|
| 60 | 2 10 59 | syl2anc | |- ( ph -> ( A ^o X ) e. On ) |
| 61 | om0 | |- ( ( A ^o X ) e. On -> ( ( A ^o X ) .o (/) ) = (/) ) |
|
| 62 | 60 61 | syl | |- ( ph -> ( ( A ^o X ) .o (/) ) = (/) ) |
| 63 | 58 62 | sylan9eqr | |- ( ( ph /\ Y = (/) ) -> ( ( A ^o X ) .o Y ) = (/) ) |
| 64 | 63 | oveq1d | |- ( ( ph /\ Y = (/) ) -> ( ( ( A ^o X ) .o Y ) +o ( ( A CNF B ) ` G ) ) = ( (/) +o ( ( A CNF B ) ` G ) ) ) |
| 65 | 46 | fveq2d | |- ( ( ph /\ Y = (/) ) -> ( ( A CNF B ) ` F ) = ( ( A CNF B ) ` G ) ) |
| 66 | 57 64 65 | 3eqtr4rd | |- ( ( ph /\ Y = (/) ) -> ( ( A CNF B ) ` F ) = ( ( ( A ^o X ) .o Y ) +o ( ( A CNF B ) ` G ) ) ) |
| 67 | 48 66 | jca | |- ( ( ph /\ Y = (/) ) -> ( F e. S /\ ( ( A CNF B ) ` F ) = ( ( ( A ^o X ) .o Y ) +o ( ( A CNF B ) ` G ) ) ) ) |
| 68 | 2 | adantr | |- ( ( ph /\ Y =/= (/) ) -> A e. On ) |
| 69 | 3 | adantr | |- ( ( ph /\ Y =/= (/) ) -> B e. On ) |
| 70 | 4 | adantr | |- ( ( ph /\ Y =/= (/) ) -> G e. S ) |
| 71 | 5 | adantr | |- ( ( ph /\ Y =/= (/) ) -> X e. B ) |
| 72 | 6 | adantr | |- ( ( ph /\ Y =/= (/) ) -> Y e. A ) |
| 73 | 7 | adantr | |- ( ( ph /\ Y =/= (/) ) -> ( G supp (/) ) C_ X ) |
| 74 | 1 68 69 70 71 72 73 8 | cantnfp1lem1 | |- ( ( ph /\ Y =/= (/) ) -> F e. S ) |
| 75 | onelon | |- ( ( A e. On /\ Y e. A ) -> Y e. On ) |
|
| 76 | 2 6 75 | syl2anc | |- ( ph -> Y e. On ) |
| 77 | on0eln0 | |- ( Y e. On -> ( (/) e. Y <-> Y =/= (/) ) ) |
|
| 78 | 76 77 | syl | |- ( ph -> ( (/) e. Y <-> Y =/= (/) ) ) |
| 79 | 78 | biimpar | |- ( ( ph /\ Y =/= (/) ) -> (/) e. Y ) |
| 80 | eqid | |- OrdIso ( _E , ( F supp (/) ) ) = OrdIso ( _E , ( F supp (/) ) ) |
|
| 81 | eqid | |- seqom ( ( k e. _V , z e. _V |-> ( ( ( A ^o ( OrdIso ( _E , ( F supp (/) ) ) ` k ) ) .o ( F ` ( OrdIso ( _E , ( F supp (/) ) ) ` k ) ) ) +o z ) ) , (/) ) = seqom ( ( k e. _V , z e. _V |-> ( ( ( A ^o ( OrdIso ( _E , ( F supp (/) ) ) ` k ) ) .o ( F ` ( OrdIso ( _E , ( F supp (/) ) ) ` k ) ) ) +o z ) ) , (/) ) |
|
| 82 | eqid | |- OrdIso ( _E , ( G supp (/) ) ) = OrdIso ( _E , ( G supp (/) ) ) |
|
| 83 | eqid | |- seqom ( ( k e. _V , z e. _V |-> ( ( ( A ^o ( OrdIso ( _E , ( G supp (/) ) ) ` k ) ) .o ( G ` ( OrdIso ( _E , ( G supp (/) ) ) ` k ) ) ) +o z ) ) , (/) ) = seqom ( ( k e. _V , z e. _V |-> ( ( ( A ^o ( OrdIso ( _E , ( G supp (/) ) ) ` k ) ) .o ( G ` ( OrdIso ( _E , ( G supp (/) ) ) ` k ) ) ) +o z ) ) , (/) ) |
|
| 84 | 1 68 69 70 71 72 73 8 79 80 81 82 83 | cantnfp1lem3 | |- ( ( ph /\ Y =/= (/) ) -> ( ( A CNF B ) ` F ) = ( ( ( A ^o X ) .o Y ) +o ( ( A CNF B ) ` G ) ) ) |
| 85 | 74 84 | jca | |- ( ( ph /\ Y =/= (/) ) -> ( F e. S /\ ( ( A CNF B ) ` F ) = ( ( ( A ^o X ) .o Y ) +o ( ( A CNF B ) ` G ) ) ) ) |
| 86 | 67 85 | pm2.61dane | |- ( ph -> ( F e. S /\ ( ( A CNF B ) ` F ) = ( ( ( A ^o X ) .o Y ) +o ( ( A CNF B ) ` G ) ) ) ) |