This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for cantnf . (Contributed by Mario Carneiro, 28-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cantnfs.s | |- S = dom ( A CNF B ) |
|
| cantnfs.a | |- ( ph -> A e. On ) |
||
| cantnfs.b | |- ( ph -> B e. On ) |
||
| oemapval.t | |- T = { <. x , y >. | E. z e. B ( ( x ` z ) e. ( y ` z ) /\ A. w e. B ( z e. w -> ( x ` w ) = ( y ` w ) ) ) } |
||
| cantnf.c | |- ( ph -> C e. ( A ^o B ) ) |
||
| cantnf.s | |- ( ph -> C C_ ran ( A CNF B ) ) |
||
| cantnf.e | |- ( ph -> (/) e. C ) |
||
| Assertion | cantnflem2 | |- ( ph -> ( A e. ( On \ 2o ) /\ C e. ( On \ 1o ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cantnfs.s | |- S = dom ( A CNF B ) |
|
| 2 | cantnfs.a | |- ( ph -> A e. On ) |
|
| 3 | cantnfs.b | |- ( ph -> B e. On ) |
|
| 4 | oemapval.t | |- T = { <. x , y >. | E. z e. B ( ( x ` z ) e. ( y ` z ) /\ A. w e. B ( z e. w -> ( x ` w ) = ( y ` w ) ) ) } |
|
| 5 | cantnf.c | |- ( ph -> C e. ( A ^o B ) ) |
|
| 6 | cantnf.s | |- ( ph -> C C_ ran ( A CNF B ) ) |
|
| 7 | cantnf.e | |- ( ph -> (/) e. C ) |
|
| 8 | oecl | |- ( ( A e. On /\ B e. On ) -> ( A ^o B ) e. On ) |
|
| 9 | 2 3 8 | syl2anc | |- ( ph -> ( A ^o B ) e. On ) |
| 10 | onelon | |- ( ( ( A ^o B ) e. On /\ C e. ( A ^o B ) ) -> C e. On ) |
|
| 11 | 9 5 10 | syl2anc | |- ( ph -> C e. On ) |
| 12 | ondif1 | |- ( C e. ( On \ 1o ) <-> ( C e. On /\ (/) e. C ) ) |
|
| 13 | 11 7 12 | sylanbrc | |- ( ph -> C e. ( On \ 1o ) ) |
| 14 | 13 | eldifbd | |- ( ph -> -. C e. 1o ) |
| 15 | ssel | |- ( ( A ^o B ) C_ 1o -> ( C e. ( A ^o B ) -> C e. 1o ) ) |
|
| 16 | 5 15 | syl5com | |- ( ph -> ( ( A ^o B ) C_ 1o -> C e. 1o ) ) |
| 17 | 14 16 | mtod | |- ( ph -> -. ( A ^o B ) C_ 1o ) |
| 18 | oe0m | |- ( B e. On -> ( (/) ^o B ) = ( 1o \ B ) ) |
|
| 19 | 3 18 | syl | |- ( ph -> ( (/) ^o B ) = ( 1o \ B ) ) |
| 20 | difss | |- ( 1o \ B ) C_ 1o |
|
| 21 | 19 20 | eqsstrdi | |- ( ph -> ( (/) ^o B ) C_ 1o ) |
| 22 | oveq1 | |- ( A = (/) -> ( A ^o B ) = ( (/) ^o B ) ) |
|
| 23 | 22 | sseq1d | |- ( A = (/) -> ( ( A ^o B ) C_ 1o <-> ( (/) ^o B ) C_ 1o ) ) |
| 24 | 21 23 | syl5ibrcom | |- ( ph -> ( A = (/) -> ( A ^o B ) C_ 1o ) ) |
| 25 | oe1m | |- ( B e. On -> ( 1o ^o B ) = 1o ) |
|
| 26 | eqimss | |- ( ( 1o ^o B ) = 1o -> ( 1o ^o B ) C_ 1o ) |
|
| 27 | 3 25 26 | 3syl | |- ( ph -> ( 1o ^o B ) C_ 1o ) |
| 28 | oveq1 | |- ( A = 1o -> ( A ^o B ) = ( 1o ^o B ) ) |
|
| 29 | 28 | sseq1d | |- ( A = 1o -> ( ( A ^o B ) C_ 1o <-> ( 1o ^o B ) C_ 1o ) ) |
| 30 | 27 29 | syl5ibrcom | |- ( ph -> ( A = 1o -> ( A ^o B ) C_ 1o ) ) |
| 31 | 24 30 | jaod | |- ( ph -> ( ( A = (/) \/ A = 1o ) -> ( A ^o B ) C_ 1o ) ) |
| 32 | 17 31 | mtod | |- ( ph -> -. ( A = (/) \/ A = 1o ) ) |
| 33 | elpri | |- ( A e. { (/) , 1o } -> ( A = (/) \/ A = 1o ) ) |
|
| 34 | df2o3 | |- 2o = { (/) , 1o } |
|
| 35 | 33 34 | eleq2s | |- ( A e. 2o -> ( A = (/) \/ A = 1o ) ) |
| 36 | 32 35 | nsyl | |- ( ph -> -. A e. 2o ) |
| 37 | 2 36 | eldifd | |- ( ph -> A e. ( On \ 2o ) ) |
| 38 | 37 13 | jca | |- ( ph -> ( A e. ( On \ 2o ) /\ C e. ( On \ 1o ) ) ) |