This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for cantnf . Here we show existence of Cantor normal forms. Assuming (by transfinite induction) that every number less than C has a normal form, we can use oeeu to factor C into the form ( ( A ^o X ) .o Y ) +o Z where 0 < Y < A and Z < ( A ^o X ) (and a fortiori X < B ). Then since Z < ( A ^o X ) <_ ( A ^o X ) .o Y <_ C , Z has a normal form, and by appending the term ( A ^o X ) .o Y using cantnfp1 we get a normal form for C . (Contributed by Mario Carneiro, 28-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cantnfs.s | ⊢ 𝑆 = dom ( 𝐴 CNF 𝐵 ) | |
| cantnfs.a | ⊢ ( 𝜑 → 𝐴 ∈ On ) | ||
| cantnfs.b | ⊢ ( 𝜑 → 𝐵 ∈ On ) | ||
| oemapval.t | ⊢ 𝑇 = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑧 ∈ 𝐵 ( ( 𝑥 ‘ 𝑧 ) ∈ ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) } | ||
| cantnf.c | ⊢ ( 𝜑 → 𝐶 ∈ ( 𝐴 ↑o 𝐵 ) ) | ||
| cantnf.s | ⊢ ( 𝜑 → 𝐶 ⊆ ran ( 𝐴 CNF 𝐵 ) ) | ||
| cantnf.e | ⊢ ( 𝜑 → ∅ ∈ 𝐶 ) | ||
| cantnf.x | ⊢ 𝑋 = ∪ ∩ { 𝑐 ∈ On ∣ 𝐶 ∈ ( 𝐴 ↑o 𝑐 ) } | ||
| cantnf.p | ⊢ 𝑃 = ( ℩ 𝑑 ∃ 𝑎 ∈ On ∃ 𝑏 ∈ ( 𝐴 ↑o 𝑋 ) ( 𝑑 = 〈 𝑎 , 𝑏 〉 ∧ ( ( ( 𝐴 ↑o 𝑋 ) ·o 𝑎 ) +o 𝑏 ) = 𝐶 ) ) | ||
| cantnf.y | ⊢ 𝑌 = ( 1st ‘ 𝑃 ) | ||
| cantnf.z | ⊢ 𝑍 = ( 2nd ‘ 𝑃 ) | ||
| cantnf.g | ⊢ ( 𝜑 → 𝐺 ∈ 𝑆 ) | ||
| cantnf.v | ⊢ ( 𝜑 → ( ( 𝐴 CNF 𝐵 ) ‘ 𝐺 ) = 𝑍 ) | ||
| cantnf.f | ⊢ 𝐹 = ( 𝑡 ∈ 𝐵 ↦ if ( 𝑡 = 𝑋 , 𝑌 , ( 𝐺 ‘ 𝑡 ) ) ) | ||
| Assertion | cantnflem3 | ⊢ ( 𝜑 → 𝐶 ∈ ran ( 𝐴 CNF 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cantnfs.s | ⊢ 𝑆 = dom ( 𝐴 CNF 𝐵 ) | |
| 2 | cantnfs.a | ⊢ ( 𝜑 → 𝐴 ∈ On ) | |
| 3 | cantnfs.b | ⊢ ( 𝜑 → 𝐵 ∈ On ) | |
| 4 | oemapval.t | ⊢ 𝑇 = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑧 ∈ 𝐵 ( ( 𝑥 ‘ 𝑧 ) ∈ ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ( 𝑧 ∈ 𝑤 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) } | |
| 5 | cantnf.c | ⊢ ( 𝜑 → 𝐶 ∈ ( 𝐴 ↑o 𝐵 ) ) | |
| 6 | cantnf.s | ⊢ ( 𝜑 → 𝐶 ⊆ ran ( 𝐴 CNF 𝐵 ) ) | |
| 7 | cantnf.e | ⊢ ( 𝜑 → ∅ ∈ 𝐶 ) | |
| 8 | cantnf.x | ⊢ 𝑋 = ∪ ∩ { 𝑐 ∈ On ∣ 𝐶 ∈ ( 𝐴 ↑o 𝑐 ) } | |
| 9 | cantnf.p | ⊢ 𝑃 = ( ℩ 𝑑 ∃ 𝑎 ∈ On ∃ 𝑏 ∈ ( 𝐴 ↑o 𝑋 ) ( 𝑑 = 〈 𝑎 , 𝑏 〉 ∧ ( ( ( 𝐴 ↑o 𝑋 ) ·o 𝑎 ) +o 𝑏 ) = 𝐶 ) ) | |
| 10 | cantnf.y | ⊢ 𝑌 = ( 1st ‘ 𝑃 ) | |
| 11 | cantnf.z | ⊢ 𝑍 = ( 2nd ‘ 𝑃 ) | |
| 12 | cantnf.g | ⊢ ( 𝜑 → 𝐺 ∈ 𝑆 ) | |
| 13 | cantnf.v | ⊢ ( 𝜑 → ( ( 𝐴 CNF 𝐵 ) ‘ 𝐺 ) = 𝑍 ) | |
| 14 | cantnf.f | ⊢ 𝐹 = ( 𝑡 ∈ 𝐵 ↦ if ( 𝑡 = 𝑋 , 𝑌 , ( 𝐺 ‘ 𝑡 ) ) ) | |
| 15 | 1 2 3 4 5 6 7 | cantnflem2 | ⊢ ( 𝜑 → ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐶 ∈ ( On ∖ 1o ) ) ) |
| 16 | eqid | ⊢ 𝑋 = 𝑋 | |
| 17 | eqid | ⊢ 𝑌 = 𝑌 | |
| 18 | eqid | ⊢ 𝑍 = 𝑍 | |
| 19 | 16 17 18 | 3pm3.2i | ⊢ ( 𝑋 = 𝑋 ∧ 𝑌 = 𝑌 ∧ 𝑍 = 𝑍 ) |
| 20 | 8 9 10 11 | oeeui | ⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐶 ∈ ( On ∖ 1o ) ) → ( ( ( 𝑋 ∈ On ∧ 𝑌 ∈ ( 𝐴 ∖ 1o ) ∧ 𝑍 ∈ ( 𝐴 ↑o 𝑋 ) ) ∧ ( ( ( 𝐴 ↑o 𝑋 ) ·o 𝑌 ) +o 𝑍 ) = 𝐶 ) ↔ ( 𝑋 = 𝑋 ∧ 𝑌 = 𝑌 ∧ 𝑍 = 𝑍 ) ) ) |
| 21 | 19 20 | mpbiri | ⊢ ( ( 𝐴 ∈ ( On ∖ 2o ) ∧ 𝐶 ∈ ( On ∖ 1o ) ) → ( ( 𝑋 ∈ On ∧ 𝑌 ∈ ( 𝐴 ∖ 1o ) ∧ 𝑍 ∈ ( 𝐴 ↑o 𝑋 ) ) ∧ ( ( ( 𝐴 ↑o 𝑋 ) ·o 𝑌 ) +o 𝑍 ) = 𝐶 ) ) |
| 22 | 15 21 | syl | ⊢ ( 𝜑 → ( ( 𝑋 ∈ On ∧ 𝑌 ∈ ( 𝐴 ∖ 1o ) ∧ 𝑍 ∈ ( 𝐴 ↑o 𝑋 ) ) ∧ ( ( ( 𝐴 ↑o 𝑋 ) ·o 𝑌 ) +o 𝑍 ) = 𝐶 ) ) |
| 23 | 22 | simpld | ⊢ ( 𝜑 → ( 𝑋 ∈ On ∧ 𝑌 ∈ ( 𝐴 ∖ 1o ) ∧ 𝑍 ∈ ( 𝐴 ↑o 𝑋 ) ) ) |
| 24 | 23 | simp1d | ⊢ ( 𝜑 → 𝑋 ∈ On ) |
| 25 | oecl | ⊢ ( ( 𝐴 ∈ On ∧ 𝑋 ∈ On ) → ( 𝐴 ↑o 𝑋 ) ∈ On ) | |
| 26 | 2 24 25 | syl2anc | ⊢ ( 𝜑 → ( 𝐴 ↑o 𝑋 ) ∈ On ) |
| 27 | 23 | simp2d | ⊢ ( 𝜑 → 𝑌 ∈ ( 𝐴 ∖ 1o ) ) |
| 28 | 27 | eldifad | ⊢ ( 𝜑 → 𝑌 ∈ 𝐴 ) |
| 29 | onelon | ⊢ ( ( 𝐴 ∈ On ∧ 𝑌 ∈ 𝐴 ) → 𝑌 ∈ On ) | |
| 30 | 2 28 29 | syl2anc | ⊢ ( 𝜑 → 𝑌 ∈ On ) |
| 31 | dif1o | ⊢ ( 𝑌 ∈ ( 𝐴 ∖ 1o ) ↔ ( 𝑌 ∈ 𝐴 ∧ 𝑌 ≠ ∅ ) ) | |
| 32 | 31 | simprbi | ⊢ ( 𝑌 ∈ ( 𝐴 ∖ 1o ) → 𝑌 ≠ ∅ ) |
| 33 | 27 32 | syl | ⊢ ( 𝜑 → 𝑌 ≠ ∅ ) |
| 34 | on0eln0 | ⊢ ( 𝑌 ∈ On → ( ∅ ∈ 𝑌 ↔ 𝑌 ≠ ∅ ) ) | |
| 35 | 30 34 | syl | ⊢ ( 𝜑 → ( ∅ ∈ 𝑌 ↔ 𝑌 ≠ ∅ ) ) |
| 36 | 33 35 | mpbird | ⊢ ( 𝜑 → ∅ ∈ 𝑌 ) |
| 37 | omword1 | ⊢ ( ( ( ( 𝐴 ↑o 𝑋 ) ∈ On ∧ 𝑌 ∈ On ) ∧ ∅ ∈ 𝑌 ) → ( 𝐴 ↑o 𝑋 ) ⊆ ( ( 𝐴 ↑o 𝑋 ) ·o 𝑌 ) ) | |
| 38 | 26 30 36 37 | syl21anc | ⊢ ( 𝜑 → ( 𝐴 ↑o 𝑋 ) ⊆ ( ( 𝐴 ↑o 𝑋 ) ·o 𝑌 ) ) |
| 39 | omcl | ⊢ ( ( ( 𝐴 ↑o 𝑋 ) ∈ On ∧ 𝑌 ∈ On ) → ( ( 𝐴 ↑o 𝑋 ) ·o 𝑌 ) ∈ On ) | |
| 40 | 26 30 39 | syl2anc | ⊢ ( 𝜑 → ( ( 𝐴 ↑o 𝑋 ) ·o 𝑌 ) ∈ On ) |
| 41 | 23 | simp3d | ⊢ ( 𝜑 → 𝑍 ∈ ( 𝐴 ↑o 𝑋 ) ) |
| 42 | onelon | ⊢ ( ( ( 𝐴 ↑o 𝑋 ) ∈ On ∧ 𝑍 ∈ ( 𝐴 ↑o 𝑋 ) ) → 𝑍 ∈ On ) | |
| 43 | 26 41 42 | syl2anc | ⊢ ( 𝜑 → 𝑍 ∈ On ) |
| 44 | oaword1 | ⊢ ( ( ( ( 𝐴 ↑o 𝑋 ) ·o 𝑌 ) ∈ On ∧ 𝑍 ∈ On ) → ( ( 𝐴 ↑o 𝑋 ) ·o 𝑌 ) ⊆ ( ( ( 𝐴 ↑o 𝑋 ) ·o 𝑌 ) +o 𝑍 ) ) | |
| 45 | 40 43 44 | syl2anc | ⊢ ( 𝜑 → ( ( 𝐴 ↑o 𝑋 ) ·o 𝑌 ) ⊆ ( ( ( 𝐴 ↑o 𝑋 ) ·o 𝑌 ) +o 𝑍 ) ) |
| 46 | 22 | simprd | ⊢ ( 𝜑 → ( ( ( 𝐴 ↑o 𝑋 ) ·o 𝑌 ) +o 𝑍 ) = 𝐶 ) |
| 47 | 45 46 | sseqtrd | ⊢ ( 𝜑 → ( ( 𝐴 ↑o 𝑋 ) ·o 𝑌 ) ⊆ 𝐶 ) |
| 48 | 38 47 | sstrd | ⊢ ( 𝜑 → ( 𝐴 ↑o 𝑋 ) ⊆ 𝐶 ) |
| 49 | oecl | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( 𝐴 ↑o 𝐵 ) ∈ On ) | |
| 50 | 2 3 49 | syl2anc | ⊢ ( 𝜑 → ( 𝐴 ↑o 𝐵 ) ∈ On ) |
| 51 | ontr2 | ⊢ ( ( ( 𝐴 ↑o 𝑋 ) ∈ On ∧ ( 𝐴 ↑o 𝐵 ) ∈ On ) → ( ( ( 𝐴 ↑o 𝑋 ) ⊆ 𝐶 ∧ 𝐶 ∈ ( 𝐴 ↑o 𝐵 ) ) → ( 𝐴 ↑o 𝑋 ) ∈ ( 𝐴 ↑o 𝐵 ) ) ) | |
| 52 | 26 50 51 | syl2anc | ⊢ ( 𝜑 → ( ( ( 𝐴 ↑o 𝑋 ) ⊆ 𝐶 ∧ 𝐶 ∈ ( 𝐴 ↑o 𝐵 ) ) → ( 𝐴 ↑o 𝑋 ) ∈ ( 𝐴 ↑o 𝐵 ) ) ) |
| 53 | 48 5 52 | mp2and | ⊢ ( 𝜑 → ( 𝐴 ↑o 𝑋 ) ∈ ( 𝐴 ↑o 𝐵 ) ) |
| 54 | 15 | simpld | ⊢ ( 𝜑 → 𝐴 ∈ ( On ∖ 2o ) ) |
| 55 | oeord | ⊢ ( ( 𝑋 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ∈ ( On ∖ 2o ) ) → ( 𝑋 ∈ 𝐵 ↔ ( 𝐴 ↑o 𝑋 ) ∈ ( 𝐴 ↑o 𝐵 ) ) ) | |
| 56 | 24 3 54 55 | syl3anc | ⊢ ( 𝜑 → ( 𝑋 ∈ 𝐵 ↔ ( 𝐴 ↑o 𝑋 ) ∈ ( 𝐴 ↑o 𝐵 ) ) ) |
| 57 | 53 56 | mpbird | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
| 58 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐺 supp ∅ ) ) → 𝐴 ∈ On ) |
| 59 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐺 supp ∅ ) ) → 𝐵 ∈ On ) |
| 60 | suppssdm | ⊢ ( 𝐺 supp ∅ ) ⊆ dom 𝐺 | |
| 61 | 1 2 3 | cantnfs | ⊢ ( 𝜑 → ( 𝐺 ∈ 𝑆 ↔ ( 𝐺 : 𝐵 ⟶ 𝐴 ∧ 𝐺 finSupp ∅ ) ) ) |
| 62 | 12 61 | mpbid | ⊢ ( 𝜑 → ( 𝐺 : 𝐵 ⟶ 𝐴 ∧ 𝐺 finSupp ∅ ) ) |
| 63 | 62 | simpld | ⊢ ( 𝜑 → 𝐺 : 𝐵 ⟶ 𝐴 ) |
| 64 | 60 63 | fssdm | ⊢ ( 𝜑 → ( 𝐺 supp ∅ ) ⊆ 𝐵 ) |
| 65 | 64 | sselda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐺 supp ∅ ) ) → 𝑥 ∈ 𝐵 ) |
| 66 | onelon | ⊢ ( ( 𝐵 ∈ On ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ On ) | |
| 67 | 59 65 66 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐺 supp ∅ ) ) → 𝑥 ∈ On ) |
| 68 | oecl | ⊢ ( ( 𝐴 ∈ On ∧ 𝑥 ∈ On ) → ( 𝐴 ↑o 𝑥 ) ∈ On ) | |
| 69 | 58 67 68 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐺 supp ∅ ) ) → ( 𝐴 ↑o 𝑥 ) ∈ On ) |
| 70 | 63 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐺 supp ∅ ) ) → 𝐺 : 𝐵 ⟶ 𝐴 ) |
| 71 | 70 65 | ffvelcdmd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐺 supp ∅ ) ) → ( 𝐺 ‘ 𝑥 ) ∈ 𝐴 ) |
| 72 | onelon | ⊢ ( ( 𝐴 ∈ On ∧ ( 𝐺 ‘ 𝑥 ) ∈ 𝐴 ) → ( 𝐺 ‘ 𝑥 ) ∈ On ) | |
| 73 | 58 71 72 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐺 supp ∅ ) ) → ( 𝐺 ‘ 𝑥 ) ∈ On ) |
| 74 | 63 | ffnd | ⊢ ( 𝜑 → 𝐺 Fn 𝐵 ) |
| 75 | 7 | elexd | ⊢ ( 𝜑 → ∅ ∈ V ) |
| 76 | elsuppfn | ⊢ ( ( 𝐺 Fn 𝐵 ∧ 𝐵 ∈ On ∧ ∅ ∈ V ) → ( 𝑥 ∈ ( 𝐺 supp ∅ ) ↔ ( 𝑥 ∈ 𝐵 ∧ ( 𝐺 ‘ 𝑥 ) ≠ ∅ ) ) ) | |
| 77 | 74 3 75 76 | syl3anc | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐺 supp ∅ ) ↔ ( 𝑥 ∈ 𝐵 ∧ ( 𝐺 ‘ 𝑥 ) ≠ ∅ ) ) ) |
| 78 | 77 | simplbda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐺 supp ∅ ) ) → ( 𝐺 ‘ 𝑥 ) ≠ ∅ ) |
| 79 | on0eln0 | ⊢ ( ( 𝐺 ‘ 𝑥 ) ∈ On → ( ∅ ∈ ( 𝐺 ‘ 𝑥 ) ↔ ( 𝐺 ‘ 𝑥 ) ≠ ∅ ) ) | |
| 80 | 73 79 | syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐺 supp ∅ ) ) → ( ∅ ∈ ( 𝐺 ‘ 𝑥 ) ↔ ( 𝐺 ‘ 𝑥 ) ≠ ∅ ) ) |
| 81 | 78 80 | mpbird | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐺 supp ∅ ) ) → ∅ ∈ ( 𝐺 ‘ 𝑥 ) ) |
| 82 | omword1 | ⊢ ( ( ( ( 𝐴 ↑o 𝑥 ) ∈ On ∧ ( 𝐺 ‘ 𝑥 ) ∈ On ) ∧ ∅ ∈ ( 𝐺 ‘ 𝑥 ) ) → ( 𝐴 ↑o 𝑥 ) ⊆ ( ( 𝐴 ↑o 𝑥 ) ·o ( 𝐺 ‘ 𝑥 ) ) ) | |
| 83 | 69 73 81 82 | syl21anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐺 supp ∅ ) ) → ( 𝐴 ↑o 𝑥 ) ⊆ ( ( 𝐴 ↑o 𝑥 ) ·o ( 𝐺 ‘ 𝑥 ) ) ) |
| 84 | eqid | ⊢ OrdIso ( E , ( 𝐺 supp ∅ ) ) = OrdIso ( E , ( 𝐺 supp ∅ ) ) | |
| 85 | 12 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐺 supp ∅ ) ) → 𝐺 ∈ 𝑆 ) |
| 86 | eqid | ⊢ seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( OrdIso ( E , ( 𝐺 supp ∅ ) ) ‘ 𝑘 ) ) ·o ( 𝐺 ‘ ( OrdIso ( E , ( 𝐺 supp ∅ ) ) ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) = seqω ( ( 𝑘 ∈ V , 𝑧 ∈ V ↦ ( ( ( 𝐴 ↑o ( OrdIso ( E , ( 𝐺 supp ∅ ) ) ‘ 𝑘 ) ) ·o ( 𝐺 ‘ ( OrdIso ( E , ( 𝐺 supp ∅ ) ) ‘ 𝑘 ) ) ) +o 𝑧 ) ) , ∅ ) | |
| 87 | 1 58 59 84 85 86 65 | cantnfle | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐺 supp ∅ ) ) → ( ( 𝐴 ↑o 𝑥 ) ·o ( 𝐺 ‘ 𝑥 ) ) ⊆ ( ( 𝐴 CNF 𝐵 ) ‘ 𝐺 ) ) |
| 88 | 13 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐺 supp ∅ ) ) → ( ( 𝐴 CNF 𝐵 ) ‘ 𝐺 ) = 𝑍 ) |
| 89 | 87 88 | sseqtrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐺 supp ∅ ) ) → ( ( 𝐴 ↑o 𝑥 ) ·o ( 𝐺 ‘ 𝑥 ) ) ⊆ 𝑍 ) |
| 90 | 83 89 | sstrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐺 supp ∅ ) ) → ( 𝐴 ↑o 𝑥 ) ⊆ 𝑍 ) |
| 91 | 41 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐺 supp ∅ ) ) → 𝑍 ∈ ( 𝐴 ↑o 𝑋 ) ) |
| 92 | 26 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐺 supp ∅ ) ) → ( 𝐴 ↑o 𝑋 ) ∈ On ) |
| 93 | ontr2 | ⊢ ( ( ( 𝐴 ↑o 𝑥 ) ∈ On ∧ ( 𝐴 ↑o 𝑋 ) ∈ On ) → ( ( ( 𝐴 ↑o 𝑥 ) ⊆ 𝑍 ∧ 𝑍 ∈ ( 𝐴 ↑o 𝑋 ) ) → ( 𝐴 ↑o 𝑥 ) ∈ ( 𝐴 ↑o 𝑋 ) ) ) | |
| 94 | 69 92 93 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐺 supp ∅ ) ) → ( ( ( 𝐴 ↑o 𝑥 ) ⊆ 𝑍 ∧ 𝑍 ∈ ( 𝐴 ↑o 𝑋 ) ) → ( 𝐴 ↑o 𝑥 ) ∈ ( 𝐴 ↑o 𝑋 ) ) ) |
| 95 | 90 91 94 | mp2and | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐺 supp ∅ ) ) → ( 𝐴 ↑o 𝑥 ) ∈ ( 𝐴 ↑o 𝑋 ) ) |
| 96 | 24 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐺 supp ∅ ) ) → 𝑋 ∈ On ) |
| 97 | 54 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐺 supp ∅ ) ) → 𝐴 ∈ ( On ∖ 2o ) ) |
| 98 | oeord | ⊢ ( ( 𝑥 ∈ On ∧ 𝑋 ∈ On ∧ 𝐴 ∈ ( On ∖ 2o ) ) → ( 𝑥 ∈ 𝑋 ↔ ( 𝐴 ↑o 𝑥 ) ∈ ( 𝐴 ↑o 𝑋 ) ) ) | |
| 99 | 67 96 97 98 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐺 supp ∅ ) ) → ( 𝑥 ∈ 𝑋 ↔ ( 𝐴 ↑o 𝑥 ) ∈ ( 𝐴 ↑o 𝑋 ) ) ) |
| 100 | 95 99 | mpbird | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐺 supp ∅ ) ) → 𝑥 ∈ 𝑋 ) |
| 101 | 100 | ex | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐺 supp ∅ ) → 𝑥 ∈ 𝑋 ) ) |
| 102 | 101 | ssrdv | ⊢ ( 𝜑 → ( 𝐺 supp ∅ ) ⊆ 𝑋 ) |
| 103 | 1 2 3 12 57 28 102 14 | cantnfp1 | ⊢ ( 𝜑 → ( 𝐹 ∈ 𝑆 ∧ ( ( 𝐴 CNF 𝐵 ) ‘ 𝐹 ) = ( ( ( 𝐴 ↑o 𝑋 ) ·o 𝑌 ) +o ( ( 𝐴 CNF 𝐵 ) ‘ 𝐺 ) ) ) ) |
| 104 | 103 | simprd | ⊢ ( 𝜑 → ( ( 𝐴 CNF 𝐵 ) ‘ 𝐹 ) = ( ( ( 𝐴 ↑o 𝑋 ) ·o 𝑌 ) +o ( ( 𝐴 CNF 𝐵 ) ‘ 𝐺 ) ) ) |
| 105 | 13 | oveq2d | ⊢ ( 𝜑 → ( ( ( 𝐴 ↑o 𝑋 ) ·o 𝑌 ) +o ( ( 𝐴 CNF 𝐵 ) ‘ 𝐺 ) ) = ( ( ( 𝐴 ↑o 𝑋 ) ·o 𝑌 ) +o 𝑍 ) ) |
| 106 | 104 105 46 | 3eqtrd | ⊢ ( 𝜑 → ( ( 𝐴 CNF 𝐵 ) ‘ 𝐹 ) = 𝐶 ) |
| 107 | 1 2 3 | cantnff | ⊢ ( 𝜑 → ( 𝐴 CNF 𝐵 ) : 𝑆 ⟶ ( 𝐴 ↑o 𝐵 ) ) |
| 108 | 107 | ffnd | ⊢ ( 𝜑 → ( 𝐴 CNF 𝐵 ) Fn 𝑆 ) |
| 109 | 103 | simpld | ⊢ ( 𝜑 → 𝐹 ∈ 𝑆 ) |
| 110 | fnfvelrn | ⊢ ( ( ( 𝐴 CNF 𝐵 ) Fn 𝑆 ∧ 𝐹 ∈ 𝑆 ) → ( ( 𝐴 CNF 𝐵 ) ‘ 𝐹 ) ∈ ran ( 𝐴 CNF 𝐵 ) ) | |
| 111 | 108 109 110 | syl2anc | ⊢ ( 𝜑 → ( ( 𝐴 CNF 𝐵 ) ‘ 𝐹 ) ∈ ran ( 𝐴 CNF 𝐵 ) ) |
| 112 | 106 111 | eqeltrrd | ⊢ ( 𝜑 → 𝐶 ∈ ran ( 𝐴 CNF 𝐵 ) ) |