This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Extract the upper bound of an interval. (Contributed by Mario Carneiro, 17-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ixx.1 | |- O = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x R z /\ z S y ) } ) |
|
| ixxub.2 | |- ( ( w e. RR* /\ B e. RR* ) -> ( w < B -> w S B ) ) |
||
| ixxub.3 | |- ( ( w e. RR* /\ B e. RR* ) -> ( w S B -> w <_ B ) ) |
||
| ixxub.4 | |- ( ( A e. RR* /\ w e. RR* ) -> ( A < w -> A R w ) ) |
||
| ixxub.5 | |- ( ( A e. RR* /\ w e. RR* ) -> ( A R w -> A <_ w ) ) |
||
| Assertion | ixxub | |- ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) -> sup ( ( A O B ) , RR* , < ) = B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ixx.1 | |- O = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x R z /\ z S y ) } ) |
|
| 2 | ixxub.2 | |- ( ( w e. RR* /\ B e. RR* ) -> ( w < B -> w S B ) ) |
|
| 3 | ixxub.3 | |- ( ( w e. RR* /\ B e. RR* ) -> ( w S B -> w <_ B ) ) |
|
| 4 | ixxub.4 | |- ( ( A e. RR* /\ w e. RR* ) -> ( A < w -> A R w ) ) |
|
| 5 | ixxub.5 | |- ( ( A e. RR* /\ w e. RR* ) -> ( A R w -> A <_ w ) ) |
|
| 6 | 1 | elixx1 | |- ( ( A e. RR* /\ B e. RR* ) -> ( w e. ( A O B ) <-> ( w e. RR* /\ A R w /\ w S B ) ) ) |
| 7 | 6 | 3adant3 | |- ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) -> ( w e. ( A O B ) <-> ( w e. RR* /\ A R w /\ w S B ) ) ) |
| 8 | 7 | biimpa | |- ( ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) /\ w e. ( A O B ) ) -> ( w e. RR* /\ A R w /\ w S B ) ) |
| 9 | 8 | simp1d | |- ( ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) /\ w e. ( A O B ) ) -> w e. RR* ) |
| 10 | 9 | ex | |- ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) -> ( w e. ( A O B ) -> w e. RR* ) ) |
| 11 | 10 | ssrdv | |- ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) -> ( A O B ) C_ RR* ) |
| 12 | supxrcl | |- ( ( A O B ) C_ RR* -> sup ( ( A O B ) , RR* , < ) e. RR* ) |
|
| 13 | 11 12 | syl | |- ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) -> sup ( ( A O B ) , RR* , < ) e. RR* ) |
| 14 | simp2 | |- ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) -> B e. RR* ) |
|
| 15 | 8 | simp3d | |- ( ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) /\ w e. ( A O B ) ) -> w S B ) |
| 16 | 14 | adantr | |- ( ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) /\ w e. ( A O B ) ) -> B e. RR* ) |
| 17 | 9 16 3 | syl2anc | |- ( ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) /\ w e. ( A O B ) ) -> ( w S B -> w <_ B ) ) |
| 18 | 15 17 | mpd | |- ( ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) /\ w e. ( A O B ) ) -> w <_ B ) |
| 19 | 18 | ralrimiva | |- ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) -> A. w e. ( A O B ) w <_ B ) |
| 20 | supxrleub | |- ( ( ( A O B ) C_ RR* /\ B e. RR* ) -> ( sup ( ( A O B ) , RR* , < ) <_ B <-> A. w e. ( A O B ) w <_ B ) ) |
|
| 21 | 11 14 20 | syl2anc | |- ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) -> ( sup ( ( A O B ) , RR* , < ) <_ B <-> A. w e. ( A O B ) w <_ B ) ) |
| 22 | 19 21 | mpbird | |- ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) -> sup ( ( A O B ) , RR* , < ) <_ B ) |
| 23 | simprl | |- ( ( ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) /\ w e. QQ ) /\ ( sup ( ( A O B ) , RR* , < ) < w /\ w < B ) ) -> sup ( ( A O B ) , RR* , < ) < w ) |
|
| 24 | 11 | ad2antrr | |- ( ( ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) /\ w e. QQ ) /\ ( sup ( ( A O B ) , RR* , < ) < w /\ w < B ) ) -> ( A O B ) C_ RR* ) |
| 25 | qre | |- ( w e. QQ -> w e. RR ) |
|
| 26 | 25 | rexrd | |- ( w e. QQ -> w e. RR* ) |
| 27 | 26 | ad2antlr | |- ( ( ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) /\ w e. QQ ) /\ ( sup ( ( A O B ) , RR* , < ) < w /\ w < B ) ) -> w e. RR* ) |
| 28 | simp1 | |- ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) -> A e. RR* ) |
|
| 29 | 28 | ad2antrr | |- ( ( ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) /\ w e. QQ ) /\ ( sup ( ( A O B ) , RR* , < ) < w /\ w < B ) ) -> A e. RR* ) |
| 30 | 13 | ad2antrr | |- ( ( ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) /\ w e. QQ ) /\ ( sup ( ( A O B ) , RR* , < ) < w /\ w < B ) ) -> sup ( ( A O B ) , RR* , < ) e. RR* ) |
| 31 | simp3 | |- ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) -> ( A O B ) =/= (/) ) |
|
| 32 | n0 | |- ( ( A O B ) =/= (/) <-> E. w w e. ( A O B ) ) |
|
| 33 | 31 32 | sylib | |- ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) -> E. w w e. ( A O B ) ) |
| 34 | 28 | adantr | |- ( ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) /\ w e. ( A O B ) ) -> A e. RR* ) |
| 35 | 13 | adantr | |- ( ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) /\ w e. ( A O B ) ) -> sup ( ( A O B ) , RR* , < ) e. RR* ) |
| 36 | 8 | simp2d | |- ( ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) /\ w e. ( A O B ) ) -> A R w ) |
| 37 | 34 9 5 | syl2anc | |- ( ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) /\ w e. ( A O B ) ) -> ( A R w -> A <_ w ) ) |
| 38 | 36 37 | mpd | |- ( ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) /\ w e. ( A O B ) ) -> A <_ w ) |
| 39 | supxrub | |- ( ( ( A O B ) C_ RR* /\ w e. ( A O B ) ) -> w <_ sup ( ( A O B ) , RR* , < ) ) |
|
| 40 | 11 39 | sylan | |- ( ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) /\ w e. ( A O B ) ) -> w <_ sup ( ( A O B ) , RR* , < ) ) |
| 41 | 34 9 35 38 40 | xrletrd | |- ( ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) /\ w e. ( A O B ) ) -> A <_ sup ( ( A O B ) , RR* , < ) ) |
| 42 | 33 41 | exlimddv | |- ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) -> A <_ sup ( ( A O B ) , RR* , < ) ) |
| 43 | 42 | ad2antrr | |- ( ( ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) /\ w e. QQ ) /\ ( sup ( ( A O B ) , RR* , < ) < w /\ w < B ) ) -> A <_ sup ( ( A O B ) , RR* , < ) ) |
| 44 | 29 30 27 43 23 | xrlelttrd | |- ( ( ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) /\ w e. QQ ) /\ ( sup ( ( A O B ) , RR* , < ) < w /\ w < B ) ) -> A < w ) |
| 45 | 29 27 4 | syl2anc | |- ( ( ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) /\ w e. QQ ) /\ ( sup ( ( A O B ) , RR* , < ) < w /\ w < B ) ) -> ( A < w -> A R w ) ) |
| 46 | 44 45 | mpd | |- ( ( ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) /\ w e. QQ ) /\ ( sup ( ( A O B ) , RR* , < ) < w /\ w < B ) ) -> A R w ) |
| 47 | simprr | |- ( ( ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) /\ w e. QQ ) /\ ( sup ( ( A O B ) , RR* , < ) < w /\ w < B ) ) -> w < B ) |
|
| 48 | 14 | ad2antrr | |- ( ( ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) /\ w e. QQ ) /\ ( sup ( ( A O B ) , RR* , < ) < w /\ w < B ) ) -> B e. RR* ) |
| 49 | 27 48 2 | syl2anc | |- ( ( ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) /\ w e. QQ ) /\ ( sup ( ( A O B ) , RR* , < ) < w /\ w < B ) ) -> ( w < B -> w S B ) ) |
| 50 | 47 49 | mpd | |- ( ( ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) /\ w e. QQ ) /\ ( sup ( ( A O B ) , RR* , < ) < w /\ w < B ) ) -> w S B ) |
| 51 | 7 | ad2antrr | |- ( ( ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) /\ w e. QQ ) /\ ( sup ( ( A O B ) , RR* , < ) < w /\ w < B ) ) -> ( w e. ( A O B ) <-> ( w e. RR* /\ A R w /\ w S B ) ) ) |
| 52 | 27 46 50 51 | mpbir3and | |- ( ( ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) /\ w e. QQ ) /\ ( sup ( ( A O B ) , RR* , < ) < w /\ w < B ) ) -> w e. ( A O B ) ) |
| 53 | 24 52 39 | syl2anc | |- ( ( ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) /\ w e. QQ ) /\ ( sup ( ( A O B ) , RR* , < ) < w /\ w < B ) ) -> w <_ sup ( ( A O B ) , RR* , < ) ) |
| 54 | 27 30 | xrlenltd | |- ( ( ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) /\ w e. QQ ) /\ ( sup ( ( A O B ) , RR* , < ) < w /\ w < B ) ) -> ( w <_ sup ( ( A O B ) , RR* , < ) <-> -. sup ( ( A O B ) , RR* , < ) < w ) ) |
| 55 | 53 54 | mpbid | |- ( ( ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) /\ w e. QQ ) /\ ( sup ( ( A O B ) , RR* , < ) < w /\ w < B ) ) -> -. sup ( ( A O B ) , RR* , < ) < w ) |
| 56 | 23 55 | pm2.65da | |- ( ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) /\ w e. QQ ) -> -. ( sup ( ( A O B ) , RR* , < ) < w /\ w < B ) ) |
| 57 | 56 | nrexdv | |- ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) -> -. E. w e. QQ ( sup ( ( A O B ) , RR* , < ) < w /\ w < B ) ) |
| 58 | qbtwnxr | |- ( ( sup ( ( A O B ) , RR* , < ) e. RR* /\ B e. RR* /\ sup ( ( A O B ) , RR* , < ) < B ) -> E. w e. QQ ( sup ( ( A O B ) , RR* , < ) < w /\ w < B ) ) |
|
| 59 | 58 | 3expia | |- ( ( sup ( ( A O B ) , RR* , < ) e. RR* /\ B e. RR* ) -> ( sup ( ( A O B ) , RR* , < ) < B -> E. w e. QQ ( sup ( ( A O B ) , RR* , < ) < w /\ w < B ) ) ) |
| 60 | 13 14 59 | syl2anc | |- ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) -> ( sup ( ( A O B ) , RR* , < ) < B -> E. w e. QQ ( sup ( ( A O B ) , RR* , < ) < w /\ w < B ) ) ) |
| 61 | 57 60 | mtod | |- ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) -> -. sup ( ( A O B ) , RR* , < ) < B ) |
| 62 | 14 13 61 | xrnltled | |- ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) -> B <_ sup ( ( A O B ) , RR* , < ) ) |
| 63 | 13 14 22 62 | xrletrid | |- ( ( A e. RR* /\ B e. RR* /\ ( A O B ) =/= (/) ) -> sup ( ( A O B ) , RR* , < ) = B ) |