This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The image of a compact set under a continuous function is compact. (Contributed by Mario Carneiro, 21-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rncmp | |- ( ( J e. Comp /\ F e. ( J Cn K ) ) -> ( K |`t ran F ) e. Comp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | |- ( ( J e. Comp /\ F e. ( J Cn K ) ) -> J e. Comp ) |
|
| 2 | eqid | |- U. J = U. J |
|
| 3 | eqid | |- U. K = U. K |
|
| 4 | 2 3 | cnf | |- ( F e. ( J Cn K ) -> F : U. J --> U. K ) |
| 5 | 4 | adantl | |- ( ( J e. Comp /\ F e. ( J Cn K ) ) -> F : U. J --> U. K ) |
| 6 | 5 | ffnd | |- ( ( J e. Comp /\ F e. ( J Cn K ) ) -> F Fn U. J ) |
| 7 | dffn4 | |- ( F Fn U. J <-> F : U. J -onto-> ran F ) |
|
| 8 | 6 7 | sylib | |- ( ( J e. Comp /\ F e. ( J Cn K ) ) -> F : U. J -onto-> ran F ) |
| 9 | cntop2 | |- ( F e. ( J Cn K ) -> K e. Top ) |
|
| 10 | 9 | adantl | |- ( ( J e. Comp /\ F e. ( J Cn K ) ) -> K e. Top ) |
| 11 | 5 | frnd | |- ( ( J e. Comp /\ F e. ( J Cn K ) ) -> ran F C_ U. K ) |
| 12 | 3 | restuni | |- ( ( K e. Top /\ ran F C_ U. K ) -> ran F = U. ( K |`t ran F ) ) |
| 13 | 10 11 12 | syl2anc | |- ( ( J e. Comp /\ F e. ( J Cn K ) ) -> ran F = U. ( K |`t ran F ) ) |
| 14 | foeq3 | |- ( ran F = U. ( K |`t ran F ) -> ( F : U. J -onto-> ran F <-> F : U. J -onto-> U. ( K |`t ran F ) ) ) |
|
| 15 | 13 14 | syl | |- ( ( J e. Comp /\ F e. ( J Cn K ) ) -> ( F : U. J -onto-> ran F <-> F : U. J -onto-> U. ( K |`t ran F ) ) ) |
| 16 | 8 15 | mpbid | |- ( ( J e. Comp /\ F e. ( J Cn K ) ) -> F : U. J -onto-> U. ( K |`t ran F ) ) |
| 17 | simpr | |- ( ( J e. Comp /\ F e. ( J Cn K ) ) -> F e. ( J Cn K ) ) |
|
| 18 | toptopon2 | |- ( K e. Top <-> K e. ( TopOn ` U. K ) ) |
|
| 19 | 10 18 | sylib | |- ( ( J e. Comp /\ F e. ( J Cn K ) ) -> K e. ( TopOn ` U. K ) ) |
| 20 | ssidd | |- ( ( J e. Comp /\ F e. ( J Cn K ) ) -> ran F C_ ran F ) |
|
| 21 | cnrest2 | |- ( ( K e. ( TopOn ` U. K ) /\ ran F C_ ran F /\ ran F C_ U. K ) -> ( F e. ( J Cn K ) <-> F e. ( J Cn ( K |`t ran F ) ) ) ) |
|
| 22 | 19 20 11 21 | syl3anc | |- ( ( J e. Comp /\ F e. ( J Cn K ) ) -> ( F e. ( J Cn K ) <-> F e. ( J Cn ( K |`t ran F ) ) ) ) |
| 23 | 17 22 | mpbid | |- ( ( J e. Comp /\ F e. ( J Cn K ) ) -> F e. ( J Cn ( K |`t ran F ) ) ) |
| 24 | eqid | |- U. ( K |`t ran F ) = U. ( K |`t ran F ) |
|
| 25 | 24 | cncmp | |- ( ( J e. Comp /\ F : U. J -onto-> U. ( K |`t ran F ) /\ F e. ( J Cn ( K |`t ran F ) ) ) -> ( K |`t ran F ) e. Comp ) |
| 26 | 1 16 23 25 | syl3anc | |- ( ( J e. Comp /\ F e. ( J Cn K ) ) -> ( K |`t ran F ) e. Comp ) |