This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A complex number can be expressed in terms of two reals. Definition 10-1.1(v) of Gleason p. 130. Axiom 17 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-cnre . (Contributed by NM, 13-May-1996) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | axcnre | |- ( A e. CC -> E. x e. RR E. y e. RR A = ( x + ( _i x. y ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-c | |- CC = ( R. X. R. ) |
|
| 2 | eqeq1 | |- ( <. z , w >. = A -> ( <. z , w >. = ( x + ( _i x. y ) ) <-> A = ( x + ( _i x. y ) ) ) ) |
|
| 3 | 2 | 2rexbidv | |- ( <. z , w >. = A -> ( E. x e. RR E. y e. RR <. z , w >. = ( x + ( _i x. y ) ) <-> E. x e. RR E. y e. RR A = ( x + ( _i x. y ) ) ) ) |
| 4 | opelreal | |- ( <. z , 0R >. e. RR <-> z e. R. ) |
|
| 5 | opelreal | |- ( <. w , 0R >. e. RR <-> w e. R. ) |
|
| 6 | 4 5 | anbi12i | |- ( ( <. z , 0R >. e. RR /\ <. w , 0R >. e. RR ) <-> ( z e. R. /\ w e. R. ) ) |
| 7 | 6 | biimpri | |- ( ( z e. R. /\ w e. R. ) -> ( <. z , 0R >. e. RR /\ <. w , 0R >. e. RR ) ) |
| 8 | df-i | |- _i = <. 0R , 1R >. |
|
| 9 | 8 | oveq1i | |- ( _i x. <. w , 0R >. ) = ( <. 0R , 1R >. x. <. w , 0R >. ) |
| 10 | 0r | |- 0R e. R. |
|
| 11 | 1sr | |- 1R e. R. |
|
| 12 | mulcnsr | |- ( ( ( 0R e. R. /\ 1R e. R. ) /\ ( w e. R. /\ 0R e. R. ) ) -> ( <. 0R , 1R >. x. <. w , 0R >. ) = <. ( ( 0R .R w ) +R ( -1R .R ( 1R .R 0R ) ) ) , ( ( 1R .R w ) +R ( 0R .R 0R ) ) >. ) |
|
| 13 | 10 11 12 | mpanl12 | |- ( ( w e. R. /\ 0R e. R. ) -> ( <. 0R , 1R >. x. <. w , 0R >. ) = <. ( ( 0R .R w ) +R ( -1R .R ( 1R .R 0R ) ) ) , ( ( 1R .R w ) +R ( 0R .R 0R ) ) >. ) |
| 14 | 10 13 | mpan2 | |- ( w e. R. -> ( <. 0R , 1R >. x. <. w , 0R >. ) = <. ( ( 0R .R w ) +R ( -1R .R ( 1R .R 0R ) ) ) , ( ( 1R .R w ) +R ( 0R .R 0R ) ) >. ) |
| 15 | mulcomsr | |- ( 0R .R w ) = ( w .R 0R ) |
|
| 16 | 00sr | |- ( w e. R. -> ( w .R 0R ) = 0R ) |
|
| 17 | 15 16 | eqtrid | |- ( w e. R. -> ( 0R .R w ) = 0R ) |
| 18 | 17 | oveq1d | |- ( w e. R. -> ( ( 0R .R w ) +R ( -1R .R ( 1R .R 0R ) ) ) = ( 0R +R ( -1R .R ( 1R .R 0R ) ) ) ) |
| 19 | 00sr | |- ( 1R e. R. -> ( 1R .R 0R ) = 0R ) |
|
| 20 | 11 19 | ax-mp | |- ( 1R .R 0R ) = 0R |
| 21 | 20 | oveq2i | |- ( -1R .R ( 1R .R 0R ) ) = ( -1R .R 0R ) |
| 22 | m1r | |- -1R e. R. |
|
| 23 | 00sr | |- ( -1R e. R. -> ( -1R .R 0R ) = 0R ) |
|
| 24 | 22 23 | ax-mp | |- ( -1R .R 0R ) = 0R |
| 25 | 21 24 | eqtri | |- ( -1R .R ( 1R .R 0R ) ) = 0R |
| 26 | 25 | oveq2i | |- ( 0R +R ( -1R .R ( 1R .R 0R ) ) ) = ( 0R +R 0R ) |
| 27 | 0idsr | |- ( 0R e. R. -> ( 0R +R 0R ) = 0R ) |
|
| 28 | 10 27 | ax-mp | |- ( 0R +R 0R ) = 0R |
| 29 | 26 28 | eqtri | |- ( 0R +R ( -1R .R ( 1R .R 0R ) ) ) = 0R |
| 30 | 18 29 | eqtrdi | |- ( w e. R. -> ( ( 0R .R w ) +R ( -1R .R ( 1R .R 0R ) ) ) = 0R ) |
| 31 | mulcomsr | |- ( 1R .R w ) = ( w .R 1R ) |
|
| 32 | 1idsr | |- ( w e. R. -> ( w .R 1R ) = w ) |
|
| 33 | 31 32 | eqtrid | |- ( w e. R. -> ( 1R .R w ) = w ) |
| 34 | 33 | oveq1d | |- ( w e. R. -> ( ( 1R .R w ) +R ( 0R .R 0R ) ) = ( w +R ( 0R .R 0R ) ) ) |
| 35 | 00sr | |- ( 0R e. R. -> ( 0R .R 0R ) = 0R ) |
|
| 36 | 10 35 | ax-mp | |- ( 0R .R 0R ) = 0R |
| 37 | 36 | oveq2i | |- ( w +R ( 0R .R 0R ) ) = ( w +R 0R ) |
| 38 | 0idsr | |- ( w e. R. -> ( w +R 0R ) = w ) |
|
| 39 | 37 38 | eqtrid | |- ( w e. R. -> ( w +R ( 0R .R 0R ) ) = w ) |
| 40 | 34 39 | eqtrd | |- ( w e. R. -> ( ( 1R .R w ) +R ( 0R .R 0R ) ) = w ) |
| 41 | 30 40 | opeq12d | |- ( w e. R. -> <. ( ( 0R .R w ) +R ( -1R .R ( 1R .R 0R ) ) ) , ( ( 1R .R w ) +R ( 0R .R 0R ) ) >. = <. 0R , w >. ) |
| 42 | 14 41 | eqtrd | |- ( w e. R. -> ( <. 0R , 1R >. x. <. w , 0R >. ) = <. 0R , w >. ) |
| 43 | 9 42 | eqtrid | |- ( w e. R. -> ( _i x. <. w , 0R >. ) = <. 0R , w >. ) |
| 44 | 43 | oveq2d | |- ( w e. R. -> ( <. z , 0R >. + ( _i x. <. w , 0R >. ) ) = ( <. z , 0R >. + <. 0R , w >. ) ) |
| 45 | 44 | adantl | |- ( ( z e. R. /\ w e. R. ) -> ( <. z , 0R >. + ( _i x. <. w , 0R >. ) ) = ( <. z , 0R >. + <. 0R , w >. ) ) |
| 46 | addcnsr | |- ( ( ( z e. R. /\ 0R e. R. ) /\ ( 0R e. R. /\ w e. R. ) ) -> ( <. z , 0R >. + <. 0R , w >. ) = <. ( z +R 0R ) , ( 0R +R w ) >. ) |
|
| 47 | 10 46 | mpanl2 | |- ( ( z e. R. /\ ( 0R e. R. /\ w e. R. ) ) -> ( <. z , 0R >. + <. 0R , w >. ) = <. ( z +R 0R ) , ( 0R +R w ) >. ) |
| 48 | 10 47 | mpanr1 | |- ( ( z e. R. /\ w e. R. ) -> ( <. z , 0R >. + <. 0R , w >. ) = <. ( z +R 0R ) , ( 0R +R w ) >. ) |
| 49 | 0idsr | |- ( z e. R. -> ( z +R 0R ) = z ) |
|
| 50 | addcomsr | |- ( 0R +R w ) = ( w +R 0R ) |
|
| 51 | 50 38 | eqtrid | |- ( w e. R. -> ( 0R +R w ) = w ) |
| 52 | opeq12 | |- ( ( ( z +R 0R ) = z /\ ( 0R +R w ) = w ) -> <. ( z +R 0R ) , ( 0R +R w ) >. = <. z , w >. ) |
|
| 53 | 49 51 52 | syl2an | |- ( ( z e. R. /\ w e. R. ) -> <. ( z +R 0R ) , ( 0R +R w ) >. = <. z , w >. ) |
| 54 | 45 48 53 | 3eqtrrd | |- ( ( z e. R. /\ w e. R. ) -> <. z , w >. = ( <. z , 0R >. + ( _i x. <. w , 0R >. ) ) ) |
| 55 | opex | |- <. z , 0R >. e. _V |
|
| 56 | opex | |- <. w , 0R >. e. _V |
|
| 57 | eleq1 | |- ( x = <. z , 0R >. -> ( x e. RR <-> <. z , 0R >. e. RR ) ) |
|
| 58 | eleq1 | |- ( y = <. w , 0R >. -> ( y e. RR <-> <. w , 0R >. e. RR ) ) |
|
| 59 | 57 58 | bi2anan9 | |- ( ( x = <. z , 0R >. /\ y = <. w , 0R >. ) -> ( ( x e. RR /\ y e. RR ) <-> ( <. z , 0R >. e. RR /\ <. w , 0R >. e. RR ) ) ) |
| 60 | oveq1 | |- ( x = <. z , 0R >. -> ( x + ( _i x. y ) ) = ( <. z , 0R >. + ( _i x. y ) ) ) |
|
| 61 | oveq2 | |- ( y = <. w , 0R >. -> ( _i x. y ) = ( _i x. <. w , 0R >. ) ) |
|
| 62 | 61 | oveq2d | |- ( y = <. w , 0R >. -> ( <. z , 0R >. + ( _i x. y ) ) = ( <. z , 0R >. + ( _i x. <. w , 0R >. ) ) ) |
| 63 | 60 62 | sylan9eq | |- ( ( x = <. z , 0R >. /\ y = <. w , 0R >. ) -> ( x + ( _i x. y ) ) = ( <. z , 0R >. + ( _i x. <. w , 0R >. ) ) ) |
| 64 | 63 | eqeq2d | |- ( ( x = <. z , 0R >. /\ y = <. w , 0R >. ) -> ( <. z , w >. = ( x + ( _i x. y ) ) <-> <. z , w >. = ( <. z , 0R >. + ( _i x. <. w , 0R >. ) ) ) ) |
| 65 | 59 64 | anbi12d | |- ( ( x = <. z , 0R >. /\ y = <. w , 0R >. ) -> ( ( ( x e. RR /\ y e. RR ) /\ <. z , w >. = ( x + ( _i x. y ) ) ) <-> ( ( <. z , 0R >. e. RR /\ <. w , 0R >. e. RR ) /\ <. z , w >. = ( <. z , 0R >. + ( _i x. <. w , 0R >. ) ) ) ) ) |
| 66 | 55 56 65 | spc2ev | |- ( ( ( <. z , 0R >. e. RR /\ <. w , 0R >. e. RR ) /\ <. z , w >. = ( <. z , 0R >. + ( _i x. <. w , 0R >. ) ) ) -> E. x E. y ( ( x e. RR /\ y e. RR ) /\ <. z , w >. = ( x + ( _i x. y ) ) ) ) |
| 67 | 7 54 66 | syl2anc | |- ( ( z e. R. /\ w e. R. ) -> E. x E. y ( ( x e. RR /\ y e. RR ) /\ <. z , w >. = ( x + ( _i x. y ) ) ) ) |
| 68 | r2ex | |- ( E. x e. RR E. y e. RR <. z , w >. = ( x + ( _i x. y ) ) <-> E. x E. y ( ( x e. RR /\ y e. RR ) /\ <. z , w >. = ( x + ( _i x. y ) ) ) ) |
|
| 69 | 67 68 | sylibr | |- ( ( z e. R. /\ w e. R. ) -> E. x e. RR E. y e. RR <. z , w >. = ( x + ( _i x. y ) ) ) |
| 70 | 1 3 69 | optocl | |- ( A e. CC -> E. x e. RR E. y e. RR A = ( x + ( _i x. y ) ) ) |