This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ordering on reals satisfies strict trichotomy. Axiom 18 of 22 for real and complex numbers, derived from ZF set theory. Note: The more general version for extended reals is axlttri . This construction-dependent theorem should not be referenced directly; instead, use ax-pre-lttri . (Contributed by NM, 19-May-1996) (Revised by Mario Carneiro, 16-Jun-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | axpre-lttri | |- ( ( A e. RR /\ B e. RR ) -> ( A |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elreal | |- ( A e. RR <-> E. x e. R. <. x , 0R >. = A ) |
|
| 2 | elreal | |- ( B e. RR <-> E. y e. R. <. y , 0R >. = B ) |
|
| 3 | breq1 | |- ( <. x , 0R >. = A -> ( <. x , 0R >. |
|
| 4 | eqeq1 | |- ( <. x , 0R >. = A -> ( <. x , 0R >. = <. y , 0R >. <-> A = <. y , 0R >. ) ) |
|
| 5 | breq2 | |- ( <. x , 0R >. = A -> ( <. y , 0R >. |
|
| 6 | 4 5 | orbi12d | |- ( <. x , 0R >. = A -> ( ( <. x , 0R >. = <. y , 0R >. \/ <. y , 0R >. |
| 7 | 6 | notbid | |- ( <. x , 0R >. = A -> ( -. ( <. x , 0R >. = <. y , 0R >. \/ <. y , 0R >. |
| 8 | 3 7 | bibi12d | |- ( <. x , 0R >. = A -> ( ( <. x , 0R >. |
| 9 | breq2 | |- ( <. y , 0R >. = B -> ( A |
|
| 10 | eqeq2 | |- ( <. y , 0R >. = B -> ( A = <. y , 0R >. <-> A = B ) ) |
|
| 11 | breq1 | |- ( <. y , 0R >. = B -> ( <. y , 0R >. |
|
| 12 | 10 11 | orbi12d | |- ( <. y , 0R >. = B -> ( ( A = <. y , 0R >. \/ <. y , 0R >. |
| 13 | 12 | notbid | |- ( <. y , 0R >. = B -> ( -. ( A = <. y , 0R >. \/ <. y , 0R >. |
| 14 | 9 13 | bibi12d | |- ( <. y , 0R >. = B -> ( ( A |
| 15 | ltsosr | |- |
|
| 16 | sotric | |- ( ( |
|
| 17 | 15 16 | mpan | |- ( ( x e. R. /\ y e. R. ) -> ( x |
| 18 | ltresr | |- ( <. x , 0R >. |
|
| 19 | vex | |- x e. _V |
|
| 20 | 19 | eqresr | |- ( <. x , 0R >. = <. y , 0R >. <-> x = y ) |
| 21 | ltresr | |- ( <. y , 0R >. |
|
| 22 | 20 21 | orbi12i | |- ( ( <. x , 0R >. = <. y , 0R >. \/ <. y , 0R >. |
| 23 | 22 | notbii | |- ( -. ( <. x , 0R >. = <. y , 0R >. \/ <. y , 0R >. |
| 24 | 17 18 23 | 3bitr4g | |- ( ( x e. R. /\ y e. R. ) -> ( <. x , 0R >. |
| 25 | 1 2 8 14 24 | 2gencl | |- ( ( A e. RR /\ B e. RR ) -> ( A |