This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Multiplication of complex numbers in terms of signed reals. (Contributed by NM, 9-Aug-1995) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mulcnsr | |- ( ( ( A e. R. /\ B e. R. ) /\ ( C e. R. /\ D e. R. ) ) -> ( <. A , B >. x. <. C , D >. ) = <. ( ( A .R C ) +R ( -1R .R ( B .R D ) ) ) , ( ( B .R C ) +R ( A .R D ) ) >. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opex | |- <. ( ( A .R C ) +R ( -1R .R ( B .R D ) ) ) , ( ( B .R C ) +R ( A .R D ) ) >. e. _V |
|
| 2 | oveq1 | |- ( w = A -> ( w .R u ) = ( A .R u ) ) |
|
| 3 | oveq1 | |- ( v = B -> ( v .R f ) = ( B .R f ) ) |
|
| 4 | 3 | oveq2d | |- ( v = B -> ( -1R .R ( v .R f ) ) = ( -1R .R ( B .R f ) ) ) |
| 5 | 2 4 | oveqan12d | |- ( ( w = A /\ v = B ) -> ( ( w .R u ) +R ( -1R .R ( v .R f ) ) ) = ( ( A .R u ) +R ( -1R .R ( B .R f ) ) ) ) |
| 6 | oveq1 | |- ( v = B -> ( v .R u ) = ( B .R u ) ) |
|
| 7 | oveq1 | |- ( w = A -> ( w .R f ) = ( A .R f ) ) |
|
| 8 | 6 7 | oveqan12rd | |- ( ( w = A /\ v = B ) -> ( ( v .R u ) +R ( w .R f ) ) = ( ( B .R u ) +R ( A .R f ) ) ) |
| 9 | 5 8 | opeq12d | |- ( ( w = A /\ v = B ) -> <. ( ( w .R u ) +R ( -1R .R ( v .R f ) ) ) , ( ( v .R u ) +R ( w .R f ) ) >. = <. ( ( A .R u ) +R ( -1R .R ( B .R f ) ) ) , ( ( B .R u ) +R ( A .R f ) ) >. ) |
| 10 | oveq2 | |- ( u = C -> ( A .R u ) = ( A .R C ) ) |
|
| 11 | oveq2 | |- ( f = D -> ( B .R f ) = ( B .R D ) ) |
|
| 12 | 11 | oveq2d | |- ( f = D -> ( -1R .R ( B .R f ) ) = ( -1R .R ( B .R D ) ) ) |
| 13 | 10 12 | oveqan12d | |- ( ( u = C /\ f = D ) -> ( ( A .R u ) +R ( -1R .R ( B .R f ) ) ) = ( ( A .R C ) +R ( -1R .R ( B .R D ) ) ) ) |
| 14 | oveq2 | |- ( u = C -> ( B .R u ) = ( B .R C ) ) |
|
| 15 | oveq2 | |- ( f = D -> ( A .R f ) = ( A .R D ) ) |
|
| 16 | 14 15 | oveqan12d | |- ( ( u = C /\ f = D ) -> ( ( B .R u ) +R ( A .R f ) ) = ( ( B .R C ) +R ( A .R D ) ) ) |
| 17 | 13 16 | opeq12d | |- ( ( u = C /\ f = D ) -> <. ( ( A .R u ) +R ( -1R .R ( B .R f ) ) ) , ( ( B .R u ) +R ( A .R f ) ) >. = <. ( ( A .R C ) +R ( -1R .R ( B .R D ) ) ) , ( ( B .R C ) +R ( A .R D ) ) >. ) |
| 18 | 9 17 | sylan9eq | |- ( ( ( w = A /\ v = B ) /\ ( u = C /\ f = D ) ) -> <. ( ( w .R u ) +R ( -1R .R ( v .R f ) ) ) , ( ( v .R u ) +R ( w .R f ) ) >. = <. ( ( A .R C ) +R ( -1R .R ( B .R D ) ) ) , ( ( B .R C ) +R ( A .R D ) ) >. ) |
| 19 | df-mul | |- x. = { <. <. x , y >. , z >. | ( ( x e. CC /\ y e. CC ) /\ E. w E. v E. u E. f ( ( x = <. w , v >. /\ y = <. u , f >. ) /\ z = <. ( ( w .R u ) +R ( -1R .R ( v .R f ) ) ) , ( ( v .R u ) +R ( w .R f ) ) >. ) ) } |
|
| 20 | df-c | |- CC = ( R. X. R. ) |
|
| 21 | 20 | eleq2i | |- ( x e. CC <-> x e. ( R. X. R. ) ) |
| 22 | 20 | eleq2i | |- ( y e. CC <-> y e. ( R. X. R. ) ) |
| 23 | 21 22 | anbi12i | |- ( ( x e. CC /\ y e. CC ) <-> ( x e. ( R. X. R. ) /\ y e. ( R. X. R. ) ) ) |
| 24 | 23 | anbi1i | |- ( ( ( x e. CC /\ y e. CC ) /\ E. w E. v E. u E. f ( ( x = <. w , v >. /\ y = <. u , f >. ) /\ z = <. ( ( w .R u ) +R ( -1R .R ( v .R f ) ) ) , ( ( v .R u ) +R ( w .R f ) ) >. ) ) <-> ( ( x e. ( R. X. R. ) /\ y e. ( R. X. R. ) ) /\ E. w E. v E. u E. f ( ( x = <. w , v >. /\ y = <. u , f >. ) /\ z = <. ( ( w .R u ) +R ( -1R .R ( v .R f ) ) ) , ( ( v .R u ) +R ( w .R f ) ) >. ) ) ) |
| 25 | 24 | oprabbii | |- { <. <. x , y >. , z >. | ( ( x e. CC /\ y e. CC ) /\ E. w E. v E. u E. f ( ( x = <. w , v >. /\ y = <. u , f >. ) /\ z = <. ( ( w .R u ) +R ( -1R .R ( v .R f ) ) ) , ( ( v .R u ) +R ( w .R f ) ) >. ) ) } = { <. <. x , y >. , z >. | ( ( x e. ( R. X. R. ) /\ y e. ( R. X. R. ) ) /\ E. w E. v E. u E. f ( ( x = <. w , v >. /\ y = <. u , f >. ) /\ z = <. ( ( w .R u ) +R ( -1R .R ( v .R f ) ) ) , ( ( v .R u ) +R ( w .R f ) ) >. ) ) } |
| 26 | 19 25 | eqtri | |- x. = { <. <. x , y >. , z >. | ( ( x e. ( R. X. R. ) /\ y e. ( R. X. R. ) ) /\ E. w E. v E. u E. f ( ( x = <. w , v >. /\ y = <. u , f >. ) /\ z = <. ( ( w .R u ) +R ( -1R .R ( v .R f ) ) ) , ( ( v .R u ) +R ( w .R f ) ) >. ) ) } |
| 27 | 1 18 26 | ov3 | |- ( ( ( A e. R. /\ B e. R. ) /\ ( C e. R. /\ D e. R. ) ) -> ( <. A , B >. x. <. C , D >. ) = <. ( ( A .R C ) +R ( -1R .R ( B .R D ) ) ) , ( ( B .R C ) +R ( A .R D ) ) >. ) |