This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Implicit substitution of class for ordered pair. (Contributed by NM, 5-Mar-1995) Shorten and reduce axiom usage. (Revised by TM, 29-Dec-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | optocl.1 | |- D = ( B X. C ) |
|
| optocl.2 | |- ( <. x , y >. = A -> ( ph <-> ps ) ) |
||
| optocl.3 | |- ( ( x e. B /\ y e. C ) -> ph ) |
||
| Assertion | optocl | |- ( A e. D -> ps ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | optocl.1 | |- D = ( B X. C ) |
|
| 2 | optocl.2 | |- ( <. x , y >. = A -> ( ph <-> ps ) ) |
|
| 3 | optocl.3 | |- ( ( x e. B /\ y e. C ) -> ph ) |
|
| 4 | elxpi | |- ( A e. ( B X. C ) -> E. x E. y ( A = <. x , y >. /\ ( x e. B /\ y e. C ) ) ) |
|
| 5 | 2 | eqcoms | |- ( A = <. x , y >. -> ( ph <-> ps ) ) |
| 6 | 3 5 | imbitrid | |- ( A = <. x , y >. -> ( ( x e. B /\ y e. C ) -> ps ) ) |
| 7 | 6 | imp | |- ( ( A = <. x , y >. /\ ( x e. B /\ y e. C ) ) -> ps ) |
| 8 | 7 | exlimivv | |- ( E. x E. y ( A = <. x , y >. /\ ( x e. B /\ y e. C ) ) -> ps ) |
| 9 | 4 8 | syl | |- ( A e. ( B X. C ) -> ps ) |
| 10 | 9 1 | eleq2s | |- ( A e. D -> ps ) |