This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Addition of complex numbers in terms of signed reals. (Contributed by NM, 28-May-1995) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | addcnsr | |- ( ( ( A e. R. /\ B e. R. ) /\ ( C e. R. /\ D e. R. ) ) -> ( <. A , B >. + <. C , D >. ) = <. ( A +R C ) , ( B +R D ) >. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opex | |- <. ( A +R C ) , ( B +R D ) >. e. _V |
|
| 2 | oveq1 | |- ( w = A -> ( w +R u ) = ( A +R u ) ) |
|
| 3 | oveq1 | |- ( v = B -> ( v +R f ) = ( B +R f ) ) |
|
| 4 | opeq12 | |- ( ( ( w +R u ) = ( A +R u ) /\ ( v +R f ) = ( B +R f ) ) -> <. ( w +R u ) , ( v +R f ) >. = <. ( A +R u ) , ( B +R f ) >. ) |
|
| 5 | 2 3 4 | syl2an | |- ( ( w = A /\ v = B ) -> <. ( w +R u ) , ( v +R f ) >. = <. ( A +R u ) , ( B +R f ) >. ) |
| 6 | oveq2 | |- ( u = C -> ( A +R u ) = ( A +R C ) ) |
|
| 7 | oveq2 | |- ( f = D -> ( B +R f ) = ( B +R D ) ) |
|
| 8 | opeq12 | |- ( ( ( A +R u ) = ( A +R C ) /\ ( B +R f ) = ( B +R D ) ) -> <. ( A +R u ) , ( B +R f ) >. = <. ( A +R C ) , ( B +R D ) >. ) |
|
| 9 | 6 7 8 | syl2an | |- ( ( u = C /\ f = D ) -> <. ( A +R u ) , ( B +R f ) >. = <. ( A +R C ) , ( B +R D ) >. ) |
| 10 | 5 9 | sylan9eq | |- ( ( ( w = A /\ v = B ) /\ ( u = C /\ f = D ) ) -> <. ( w +R u ) , ( v +R f ) >. = <. ( A +R C ) , ( B +R D ) >. ) |
| 11 | df-add | |- + = { <. <. x , y >. , z >. | ( ( x e. CC /\ y e. CC ) /\ E. w E. v E. u E. f ( ( x = <. w , v >. /\ y = <. u , f >. ) /\ z = <. ( w +R u ) , ( v +R f ) >. ) ) } |
|
| 12 | df-c | |- CC = ( R. X. R. ) |
|
| 13 | 12 | eleq2i | |- ( x e. CC <-> x e. ( R. X. R. ) ) |
| 14 | 12 | eleq2i | |- ( y e. CC <-> y e. ( R. X. R. ) ) |
| 15 | 13 14 | anbi12i | |- ( ( x e. CC /\ y e. CC ) <-> ( x e. ( R. X. R. ) /\ y e. ( R. X. R. ) ) ) |
| 16 | 15 | anbi1i | |- ( ( ( x e. CC /\ y e. CC ) /\ E. w E. v E. u E. f ( ( x = <. w , v >. /\ y = <. u , f >. ) /\ z = <. ( w +R u ) , ( v +R f ) >. ) ) <-> ( ( x e. ( R. X. R. ) /\ y e. ( R. X. R. ) ) /\ E. w E. v E. u E. f ( ( x = <. w , v >. /\ y = <. u , f >. ) /\ z = <. ( w +R u ) , ( v +R f ) >. ) ) ) |
| 17 | 16 | oprabbii | |- { <. <. x , y >. , z >. | ( ( x e. CC /\ y e. CC ) /\ E. w E. v E. u E. f ( ( x = <. w , v >. /\ y = <. u , f >. ) /\ z = <. ( w +R u ) , ( v +R f ) >. ) ) } = { <. <. x , y >. , z >. | ( ( x e. ( R. X. R. ) /\ y e. ( R. X. R. ) ) /\ E. w E. v E. u E. f ( ( x = <. w , v >. /\ y = <. u , f >. ) /\ z = <. ( w +R u ) , ( v +R f ) >. ) ) } |
| 18 | 11 17 | eqtri | |- + = { <. <. x , y >. , z >. | ( ( x e. ( R. X. R. ) /\ y e. ( R. X. R. ) ) /\ E. w E. v E. u E. f ( ( x = <. w , v >. /\ y = <. u , f >. ) /\ z = <. ( w +R u ) , ( v +R f ) >. ) ) } |
| 19 | 1 10 18 | ov3 | |- ( ( ( A e. R. /\ B e. R. ) /\ ( C e. R. /\ D e. R. ) ) -> ( <. A , B >. + <. C , D >. ) = <. ( A +R C ) , ( B +R D ) >. ) |