This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A complex number can be expressed in terms of two reals. Definition 10-1.1(v) of Gleason p. 130. Axiom 17 of 22 for real and complex numbers, justified by Theorem axcnre . For naming consistency, use cnre for new proofs. (New usage is discouraged.) (Contributed by NM, 9-May-1999)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ax-cnre | |- ( A e. CC -> E. x e. RR E. y e. RR A = ( x + ( _i x. y ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cA | |- A |
|
| 1 | cc | |- CC |
|
| 2 | 0 1 | wcel | |- A e. CC |
| 3 | vx | |- x |
|
| 4 | cr | |- RR |
|
| 5 | vy | |- y |
|
| 6 | 3 | cv | |- x |
| 7 | caddc | |- + |
|
| 8 | ci | |- _i |
|
| 9 | cmul | |- x. |
|
| 10 | 5 | cv | |- y |
| 11 | 8 10 9 | co | |- ( _i x. y ) |
| 12 | 6 11 7 | co | |- ( x + ( _i x. y ) ) |
| 13 | 0 12 | wceq | |- A = ( x + ( _i x. y ) ) |
| 14 | 13 5 4 | wrex | |- E. y e. RR A = ( x + ( _i x. y ) ) |
| 15 | 14 3 4 | wrex | |- E. x e. RR E. y e. RR A = ( x + ( _i x. y ) ) |
| 16 | 2 15 | wi | |- ( A e. CC -> E. x e. RR E. y e. RR A = ( x + ( _i x. y ) ) ) |