This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A signed real times 0 is 0. (Contributed by NM, 10-Apr-1996) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 00sr | |- ( A e. R. -> ( A .R 0R ) = 0R ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nr | |- R. = ( ( P. X. P. ) /. ~R ) |
|
| 2 | oveq1 | |- ( [ <. x , y >. ] ~R = A -> ( [ <. x , y >. ] ~R .R 0R ) = ( A .R 0R ) ) |
|
| 3 | 2 | eqeq1d | |- ( [ <. x , y >. ] ~R = A -> ( ( [ <. x , y >. ] ~R .R 0R ) = 0R <-> ( A .R 0R ) = 0R ) ) |
| 4 | 1pr | |- 1P e. P. |
|
| 5 | mulsrpr | |- ( ( ( x e. P. /\ y e. P. ) /\ ( 1P e. P. /\ 1P e. P. ) ) -> ( [ <. x , y >. ] ~R .R [ <. 1P , 1P >. ] ~R ) = [ <. ( ( x .P. 1P ) +P. ( y .P. 1P ) ) , ( ( x .P. 1P ) +P. ( y .P. 1P ) ) >. ] ~R ) |
|
| 6 | 4 4 5 | mpanr12 | |- ( ( x e. P. /\ y e. P. ) -> ( [ <. x , y >. ] ~R .R [ <. 1P , 1P >. ] ~R ) = [ <. ( ( x .P. 1P ) +P. ( y .P. 1P ) ) , ( ( x .P. 1P ) +P. ( y .P. 1P ) ) >. ] ~R ) |
| 7 | mulclpr | |- ( ( x e. P. /\ 1P e. P. ) -> ( x .P. 1P ) e. P. ) |
|
| 8 | 4 7 | mpan2 | |- ( x e. P. -> ( x .P. 1P ) e. P. ) |
| 9 | mulclpr | |- ( ( y e. P. /\ 1P e. P. ) -> ( y .P. 1P ) e. P. ) |
|
| 10 | 4 9 | mpan2 | |- ( y e. P. -> ( y .P. 1P ) e. P. ) |
| 11 | addclpr | |- ( ( ( x .P. 1P ) e. P. /\ ( y .P. 1P ) e. P. ) -> ( ( x .P. 1P ) +P. ( y .P. 1P ) ) e. P. ) |
|
| 12 | 8 10 11 | syl2an | |- ( ( x e. P. /\ y e. P. ) -> ( ( x .P. 1P ) +P. ( y .P. 1P ) ) e. P. ) |
| 13 | 12 12 | anim12i | |- ( ( ( x e. P. /\ y e. P. ) /\ ( x e. P. /\ y e. P. ) ) -> ( ( ( x .P. 1P ) +P. ( y .P. 1P ) ) e. P. /\ ( ( x .P. 1P ) +P. ( y .P. 1P ) ) e. P. ) ) |
| 14 | eqid | |- ( ( ( x .P. 1P ) +P. ( y .P. 1P ) ) +P. 1P ) = ( ( ( x .P. 1P ) +P. ( y .P. 1P ) ) +P. 1P ) |
|
| 15 | enreceq | |- ( ( ( ( ( x .P. 1P ) +P. ( y .P. 1P ) ) e. P. /\ ( ( x .P. 1P ) +P. ( y .P. 1P ) ) e. P. ) /\ ( 1P e. P. /\ 1P e. P. ) ) -> ( [ <. ( ( x .P. 1P ) +P. ( y .P. 1P ) ) , ( ( x .P. 1P ) +P. ( y .P. 1P ) ) >. ] ~R = [ <. 1P , 1P >. ] ~R <-> ( ( ( x .P. 1P ) +P. ( y .P. 1P ) ) +P. 1P ) = ( ( ( x .P. 1P ) +P. ( y .P. 1P ) ) +P. 1P ) ) ) |
|
| 16 | 14 15 | mpbiri | |- ( ( ( ( ( x .P. 1P ) +P. ( y .P. 1P ) ) e. P. /\ ( ( x .P. 1P ) +P. ( y .P. 1P ) ) e. P. ) /\ ( 1P e. P. /\ 1P e. P. ) ) -> [ <. ( ( x .P. 1P ) +P. ( y .P. 1P ) ) , ( ( x .P. 1P ) +P. ( y .P. 1P ) ) >. ] ~R = [ <. 1P , 1P >. ] ~R ) |
| 17 | 13 16 | sylan | |- ( ( ( ( x e. P. /\ y e. P. ) /\ ( x e. P. /\ y e. P. ) ) /\ ( 1P e. P. /\ 1P e. P. ) ) -> [ <. ( ( x .P. 1P ) +P. ( y .P. 1P ) ) , ( ( x .P. 1P ) +P. ( y .P. 1P ) ) >. ] ~R = [ <. 1P , 1P >. ] ~R ) |
| 18 | 4 4 17 | mpanr12 | |- ( ( ( x e. P. /\ y e. P. ) /\ ( x e. P. /\ y e. P. ) ) -> [ <. ( ( x .P. 1P ) +P. ( y .P. 1P ) ) , ( ( x .P. 1P ) +P. ( y .P. 1P ) ) >. ] ~R = [ <. 1P , 1P >. ] ~R ) |
| 19 | 18 | anidms | |- ( ( x e. P. /\ y e. P. ) -> [ <. ( ( x .P. 1P ) +P. ( y .P. 1P ) ) , ( ( x .P. 1P ) +P. ( y .P. 1P ) ) >. ] ~R = [ <. 1P , 1P >. ] ~R ) |
| 20 | 6 19 | eqtrd | |- ( ( x e. P. /\ y e. P. ) -> ( [ <. x , y >. ] ~R .R [ <. 1P , 1P >. ] ~R ) = [ <. 1P , 1P >. ] ~R ) |
| 21 | df-0r | |- 0R = [ <. 1P , 1P >. ] ~R |
|
| 22 | 21 | oveq2i | |- ( [ <. x , y >. ] ~R .R 0R ) = ( [ <. x , y >. ] ~R .R [ <. 1P , 1P >. ] ~R ) |
| 23 | 20 22 21 | 3eqtr4g | |- ( ( x e. P. /\ y e. P. ) -> ( [ <. x , y >. ] ~R .R 0R ) = 0R ) |
| 24 | 1 3 23 | ecoptocl | |- ( A e. R. -> ( A .R 0R ) = 0R ) |