This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ordered pair membership in class of real subset of complex numbers. (Contributed by NM, 22-Feb-1996) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | opelreal | |- ( <. A , 0R >. e. RR <-> A e. R. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- 0R = 0R |
|
| 2 | df-r | |- RR = ( R. X. { 0R } ) |
|
| 3 | 2 | eleq2i | |- ( <. A , 0R >. e. RR <-> <. A , 0R >. e. ( R. X. { 0R } ) ) |
| 4 | opelxp | |- ( <. A , 0R >. e. ( R. X. { 0R } ) <-> ( A e. R. /\ 0R e. { 0R } ) ) |
|
| 5 | 0r | |- 0R e. R. |
|
| 6 | 5 | elexi | |- 0R e. _V |
| 7 | 6 | elsn | |- ( 0R e. { 0R } <-> 0R = 0R ) |
| 8 | 7 | anbi2i | |- ( ( A e. R. /\ 0R e. { 0R } ) <-> ( A e. R. /\ 0R = 0R ) ) |
| 9 | 3 4 8 | 3bitri | |- ( <. A , 0R >. e. RR <-> ( A e. R. /\ 0R = 0R ) ) |
| 10 | 1 9 | mpbiran2 | |- ( <. A , 0R >. e. RR <-> A e. R. ) |