This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An upper bound for the cardinality of an indexed union. C depends on x and should be thought of as C ( x ) . (Contributed by NM, 26-Mar-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iundom | |- ( ( A e. V /\ A. x e. A C ~<_ B ) -> U_ x e. A C ~<_ ( A X. B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- U_ x e. A ( { x } X. C ) = U_ x e. A ( { x } X. C ) |
|
| 2 | simpl | |- ( ( A e. V /\ A. x e. A C ~<_ B ) -> A e. V ) |
|
| 3 | ovex | |- ( B ^m C ) e. _V |
|
| 4 | 3 | rgenw | |- A. x e. A ( B ^m C ) e. _V |
| 5 | iunexg | |- ( ( A e. V /\ A. x e. A ( B ^m C ) e. _V ) -> U_ x e. A ( B ^m C ) e. _V ) |
|
| 6 | 2 4 5 | sylancl | |- ( ( A e. V /\ A. x e. A C ~<_ B ) -> U_ x e. A ( B ^m C ) e. _V ) |
| 7 | numth3 | |- ( U_ x e. A ( B ^m C ) e. _V -> U_ x e. A ( B ^m C ) e. dom card ) |
|
| 8 | 6 7 | syl | |- ( ( A e. V /\ A. x e. A C ~<_ B ) -> U_ x e. A ( B ^m C ) e. dom card ) |
| 9 | numacn | |- ( A e. V -> ( U_ x e. A ( B ^m C ) e. dom card -> U_ x e. A ( B ^m C ) e. AC_ A ) ) |
|
| 10 | 2 8 9 | sylc | |- ( ( A e. V /\ A. x e. A C ~<_ B ) -> U_ x e. A ( B ^m C ) e. AC_ A ) |
| 11 | simpr | |- ( ( A e. V /\ A. x e. A C ~<_ B ) -> A. x e. A C ~<_ B ) |
|
| 12 | reldom | |- Rel ~<_ |
|
| 13 | 12 | brrelex1i | |- ( C ~<_ B -> C e. _V ) |
| 14 | 13 | ralimi | |- ( A. x e. A C ~<_ B -> A. x e. A C e. _V ) |
| 15 | iunexg | |- ( ( A e. V /\ A. x e. A C e. _V ) -> U_ x e. A C e. _V ) |
|
| 16 | 14 15 | sylan2 | |- ( ( A e. V /\ A. x e. A C ~<_ B ) -> U_ x e. A C e. _V ) |
| 17 | 1 10 11 | iundom2g | |- ( ( A e. V /\ A. x e. A C ~<_ B ) -> U_ x e. A ( { x } X. C ) ~<_ ( A X. B ) ) |
| 18 | 12 | brrelex2i | |- ( U_ x e. A ( { x } X. C ) ~<_ ( A X. B ) -> ( A X. B ) e. _V ) |
| 19 | numth3 | |- ( ( A X. B ) e. _V -> ( A X. B ) e. dom card ) |
|
| 20 | 17 18 19 | 3syl | |- ( ( A e. V /\ A. x e. A C ~<_ B ) -> ( A X. B ) e. dom card ) |
| 21 | numacn | |- ( U_ x e. A C e. _V -> ( ( A X. B ) e. dom card -> ( A X. B ) e. AC_ U_ x e. A C ) ) |
|
| 22 | 16 20 21 | sylc | |- ( ( A e. V /\ A. x e. A C ~<_ B ) -> ( A X. B ) e. AC_ U_ x e. A C ) |
| 23 | 1 10 11 22 | iundomg | |- ( ( A e. V /\ A. x e. A C ~<_ B ) -> U_ x e. A C ~<_ ( A X. B ) ) |