This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A set dominated by an aleph is strictly dominated by its successor aleph and vice-versa. (Contributed by NM, 3-Nov-2003) (Revised by Mario Carneiro, 2-Feb-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | alephsucdom | |- ( B e. On -> ( A ~<_ ( aleph ` B ) <-> A ~< ( aleph ` suc B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alephordilem1 | |- ( B e. On -> ( aleph ` B ) ~< ( aleph ` suc B ) ) |
|
| 2 | domsdomtr | |- ( ( A ~<_ ( aleph ` B ) /\ ( aleph ` B ) ~< ( aleph ` suc B ) ) -> A ~< ( aleph ` suc B ) ) |
|
| 3 | 2 | ex | |- ( A ~<_ ( aleph ` B ) -> ( ( aleph ` B ) ~< ( aleph ` suc B ) -> A ~< ( aleph ` suc B ) ) ) |
| 4 | 1 3 | syl5com | |- ( B e. On -> ( A ~<_ ( aleph ` B ) -> A ~< ( aleph ` suc B ) ) ) |
| 5 | sdomdom | |- ( A ~< ( aleph ` suc B ) -> A ~<_ ( aleph ` suc B ) ) |
|
| 6 | alephon | |- ( aleph ` suc B ) e. On |
|
| 7 | ondomen | |- ( ( ( aleph ` suc B ) e. On /\ A ~<_ ( aleph ` suc B ) ) -> A e. dom card ) |
|
| 8 | 6 7 | mpan | |- ( A ~<_ ( aleph ` suc B ) -> A e. dom card ) |
| 9 | cardid2 | |- ( A e. dom card -> ( card ` A ) ~~ A ) |
|
| 10 | 5 8 9 | 3syl | |- ( A ~< ( aleph ` suc B ) -> ( card ` A ) ~~ A ) |
| 11 | 10 | ensymd | |- ( A ~< ( aleph ` suc B ) -> A ~~ ( card ` A ) ) |
| 12 | alephnbtwn2 | |- -. ( ( aleph ` B ) ~< ( card ` A ) /\ ( card ` A ) ~< ( aleph ` suc B ) ) |
|
| 13 | 12 | imnani | |- ( ( aleph ` B ) ~< ( card ` A ) -> -. ( card ` A ) ~< ( aleph ` suc B ) ) |
| 14 | ensdomtr | |- ( ( ( card ` A ) ~~ A /\ A ~< ( aleph ` suc B ) ) -> ( card ` A ) ~< ( aleph ` suc B ) ) |
|
| 15 | 10 14 | mpancom | |- ( A ~< ( aleph ` suc B ) -> ( card ` A ) ~< ( aleph ` suc B ) ) |
| 16 | 13 15 | nsyl3 | |- ( A ~< ( aleph ` suc B ) -> -. ( aleph ` B ) ~< ( card ` A ) ) |
| 17 | cardon | |- ( card ` A ) e. On |
|
| 18 | alephon | |- ( aleph ` B ) e. On |
|
| 19 | domtriord | |- ( ( ( card ` A ) e. On /\ ( aleph ` B ) e. On ) -> ( ( card ` A ) ~<_ ( aleph ` B ) <-> -. ( aleph ` B ) ~< ( card ` A ) ) ) |
|
| 20 | 17 18 19 | mp2an | |- ( ( card ` A ) ~<_ ( aleph ` B ) <-> -. ( aleph ` B ) ~< ( card ` A ) ) |
| 21 | 16 20 | sylibr | |- ( A ~< ( aleph ` suc B ) -> ( card ` A ) ~<_ ( aleph ` B ) ) |
| 22 | endomtr | |- ( ( A ~~ ( card ` A ) /\ ( card ` A ) ~<_ ( aleph ` B ) ) -> A ~<_ ( aleph ` B ) ) |
|
| 23 | 11 21 22 | syl2anc | |- ( A ~< ( aleph ` suc B ) -> A ~<_ ( aleph ` B ) ) |
| 24 | 4 23 | impbid1 | |- ( B e. On -> ( A ~<_ ( aleph ` B ) <-> A ~< ( aleph ` suc B ) ) ) |