This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The initial value of the recursive definition generator. (Contributed by NM, 23-Apr-1995) (Revised by Mario Carneiro, 14-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | rdg.1 | |- A e. _V |
|
| Assertion | rdg0 | |- ( rec ( F , A ) ` (/) ) = A |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rdg.1 | |- A e. _V |
|
| 2 | rdgdmlim | |- Lim dom rec ( F , A ) |
|
| 3 | limomss | |- ( Lim dom rec ( F , A ) -> _om C_ dom rec ( F , A ) ) |
|
| 4 | 2 3 | ax-mp | |- _om C_ dom rec ( F , A ) |
| 5 | peano1 | |- (/) e. _om |
|
| 6 | 4 5 | sselii | |- (/) e. dom rec ( F , A ) |
| 7 | eqid | |- ( x e. _V |-> if ( x = (/) , A , if ( Lim dom x , U. ran x , ( F ` ( x ` U. dom x ) ) ) ) ) = ( x e. _V |-> if ( x = (/) , A , if ( Lim dom x , U. ran x , ( F ` ( x ` U. dom x ) ) ) ) ) |
|
| 8 | rdgvalg | |- ( y e. dom rec ( F , A ) -> ( rec ( F , A ) ` y ) = ( ( x e. _V |-> if ( x = (/) , A , if ( Lim dom x , U. ran x , ( F ` ( x ` U. dom x ) ) ) ) ) ` ( rec ( F , A ) |` y ) ) ) |
|
| 9 | 7 8 1 | tz7.44-1 | |- ( (/) e. dom rec ( F , A ) -> ( rec ( F , A ) ` (/) ) = A ) |
| 10 | 6 9 | ax-mp | |- ( rec ( F , A ) ` (/) ) = A |