This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The successor value resulting from finite recursive definition generation. (Contributed by NM, 15-Oct-1996) (Revised by Mario Carneiro, 16-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | frsuc | |- ( B e. _om -> ( ( rec ( F , A ) |` _om ) ` suc B ) = ( F ` ( ( rec ( F , A ) |` _om ) ` B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rdgdmlim | |- Lim dom rec ( F , A ) |
|
| 2 | limomss | |- ( Lim dom rec ( F , A ) -> _om C_ dom rec ( F , A ) ) |
|
| 3 | 1 2 | ax-mp | |- _om C_ dom rec ( F , A ) |
| 4 | 3 | sseli | |- ( B e. _om -> B e. dom rec ( F , A ) ) |
| 5 | rdgsucg | |- ( B e. dom rec ( F , A ) -> ( rec ( F , A ) ` suc B ) = ( F ` ( rec ( F , A ) ` B ) ) ) |
|
| 6 | 4 5 | syl | |- ( B e. _om -> ( rec ( F , A ) ` suc B ) = ( F ` ( rec ( F , A ) ` B ) ) ) |
| 7 | peano2b | |- ( B e. _om <-> suc B e. _om ) |
|
| 8 | fvres | |- ( suc B e. _om -> ( ( rec ( F , A ) |` _om ) ` suc B ) = ( rec ( F , A ) ` suc B ) ) |
|
| 9 | 7 8 | sylbi | |- ( B e. _om -> ( ( rec ( F , A ) |` _om ) ` suc B ) = ( rec ( F , A ) ` suc B ) ) |
| 10 | fvres | |- ( B e. _om -> ( ( rec ( F , A ) |` _om ) ` B ) = ( rec ( F , A ) ` B ) ) |
|
| 11 | 10 | fveq2d | |- ( B e. _om -> ( F ` ( ( rec ( F , A ) |` _om ) ` B ) ) = ( F ` ( rec ( F , A ) ` B ) ) ) |
| 12 | 6 9 11 | 3eqtr4d | |- ( B e. _om -> ( ( rec ( F , A ) |` _om ) ` suc B ) = ( F ` ( ( rec ( F , A ) |` _om ) ` B ) ) ) |