This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The first _om levels of the cumulative hierarchy are all finite. (Contributed by Mario Carneiro, 15-May-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | r1fin | |- ( A e. _om -> ( R1 ` A ) e. Fin ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 | |- ( n = (/) -> ( R1 ` n ) = ( R1 ` (/) ) ) |
|
| 2 | 1 | eleq1d | |- ( n = (/) -> ( ( R1 ` n ) e. Fin <-> ( R1 ` (/) ) e. Fin ) ) |
| 3 | fveq2 | |- ( n = m -> ( R1 ` n ) = ( R1 ` m ) ) |
|
| 4 | 3 | eleq1d | |- ( n = m -> ( ( R1 ` n ) e. Fin <-> ( R1 ` m ) e. Fin ) ) |
| 5 | fveq2 | |- ( n = suc m -> ( R1 ` n ) = ( R1 ` suc m ) ) |
|
| 6 | 5 | eleq1d | |- ( n = suc m -> ( ( R1 ` n ) e. Fin <-> ( R1 ` suc m ) e. Fin ) ) |
| 7 | fveq2 | |- ( n = A -> ( R1 ` n ) = ( R1 ` A ) ) |
|
| 8 | 7 | eleq1d | |- ( n = A -> ( ( R1 ` n ) e. Fin <-> ( R1 ` A ) e. Fin ) ) |
| 9 | r10 | |- ( R1 ` (/) ) = (/) |
|
| 10 | 0fi | |- (/) e. Fin |
|
| 11 | 9 10 | eqeltri | |- ( R1 ` (/) ) e. Fin |
| 12 | pwfi | |- ( ( R1 ` m ) e. Fin <-> ~P ( R1 ` m ) e. Fin ) |
|
| 13 | r1funlim | |- ( Fun R1 /\ Lim dom R1 ) |
|
| 14 | 13 | simpri | |- Lim dom R1 |
| 15 | limomss | |- ( Lim dom R1 -> _om C_ dom R1 ) |
|
| 16 | 14 15 | ax-mp | |- _om C_ dom R1 |
| 17 | 16 | sseli | |- ( m e. _om -> m e. dom R1 ) |
| 18 | r1sucg | |- ( m e. dom R1 -> ( R1 ` suc m ) = ~P ( R1 ` m ) ) |
|
| 19 | 17 18 | syl | |- ( m e. _om -> ( R1 ` suc m ) = ~P ( R1 ` m ) ) |
| 20 | 19 | eleq1d | |- ( m e. _om -> ( ( R1 ` suc m ) e. Fin <-> ~P ( R1 ` m ) e. Fin ) ) |
| 21 | 12 20 | bitr4id | |- ( m e. _om -> ( ( R1 ` m ) e. Fin <-> ( R1 ` suc m ) e. Fin ) ) |
| 22 | 21 | biimpd | |- ( m e. _om -> ( ( R1 ` m ) e. Fin -> ( R1 ` suc m ) e. Fin ) ) |
| 23 | 2 4 6 8 11 22 | finds | |- ( A e. _om -> ( R1 ` A ) e. Fin ) |