This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ackbij2 . (Contributed by Stefan O'Rear, 18-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ackbij.f | |- F = ( x e. ( ~P _om i^i Fin ) |-> ( card ` U_ y e. x ( { y } X. ~P y ) ) ) |
|
| ackbij.g | |- G = ( x e. _V |-> ( y e. ~P dom x |-> ( F ` ( x " y ) ) ) ) |
||
| Assertion | ackbij2lem3 | |- ( A e. _om -> ( rec ( G , (/) ) ` A ) C_ ( rec ( G , (/) ) ` suc A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ackbij.f | |- F = ( x e. ( ~P _om i^i Fin ) |-> ( card ` U_ y e. x ( { y } X. ~P y ) ) ) |
|
| 2 | ackbij.g | |- G = ( x e. _V |-> ( y e. ~P dom x |-> ( F ` ( x " y ) ) ) ) |
|
| 3 | fveq2 | |- ( a = (/) -> ( rec ( G , (/) ) ` a ) = ( rec ( G , (/) ) ` (/) ) ) |
|
| 4 | suceq | |- ( a = (/) -> suc a = suc (/) ) |
|
| 5 | 4 | fveq2d | |- ( a = (/) -> ( rec ( G , (/) ) ` suc a ) = ( rec ( G , (/) ) ` suc (/) ) ) |
| 6 | fveq2 | |- ( a = (/) -> ( R1 ` a ) = ( R1 ` (/) ) ) |
|
| 7 | 5 6 | reseq12d | |- ( a = (/) -> ( ( rec ( G , (/) ) ` suc a ) |` ( R1 ` a ) ) = ( ( rec ( G , (/) ) ` suc (/) ) |` ( R1 ` (/) ) ) ) |
| 8 | 3 7 | eqeq12d | |- ( a = (/) -> ( ( rec ( G , (/) ) ` a ) = ( ( rec ( G , (/) ) ` suc a ) |` ( R1 ` a ) ) <-> ( rec ( G , (/) ) ` (/) ) = ( ( rec ( G , (/) ) ` suc (/) ) |` ( R1 ` (/) ) ) ) ) |
| 9 | fveq2 | |- ( a = b -> ( rec ( G , (/) ) ` a ) = ( rec ( G , (/) ) ` b ) ) |
|
| 10 | suceq | |- ( a = b -> suc a = suc b ) |
|
| 11 | 10 | fveq2d | |- ( a = b -> ( rec ( G , (/) ) ` suc a ) = ( rec ( G , (/) ) ` suc b ) ) |
| 12 | fveq2 | |- ( a = b -> ( R1 ` a ) = ( R1 ` b ) ) |
|
| 13 | 11 12 | reseq12d | |- ( a = b -> ( ( rec ( G , (/) ) ` suc a ) |` ( R1 ` a ) ) = ( ( rec ( G , (/) ) ` suc b ) |` ( R1 ` b ) ) ) |
| 14 | 9 13 | eqeq12d | |- ( a = b -> ( ( rec ( G , (/) ) ` a ) = ( ( rec ( G , (/) ) ` suc a ) |` ( R1 ` a ) ) <-> ( rec ( G , (/) ) ` b ) = ( ( rec ( G , (/) ) ` suc b ) |` ( R1 ` b ) ) ) ) |
| 15 | fveq2 | |- ( a = suc b -> ( rec ( G , (/) ) ` a ) = ( rec ( G , (/) ) ` suc b ) ) |
|
| 16 | suceq | |- ( a = suc b -> suc a = suc suc b ) |
|
| 17 | 16 | fveq2d | |- ( a = suc b -> ( rec ( G , (/) ) ` suc a ) = ( rec ( G , (/) ) ` suc suc b ) ) |
| 18 | fveq2 | |- ( a = suc b -> ( R1 ` a ) = ( R1 ` suc b ) ) |
|
| 19 | 17 18 | reseq12d | |- ( a = suc b -> ( ( rec ( G , (/) ) ` suc a ) |` ( R1 ` a ) ) = ( ( rec ( G , (/) ) ` suc suc b ) |` ( R1 ` suc b ) ) ) |
| 20 | 15 19 | eqeq12d | |- ( a = suc b -> ( ( rec ( G , (/) ) ` a ) = ( ( rec ( G , (/) ) ` suc a ) |` ( R1 ` a ) ) <-> ( rec ( G , (/) ) ` suc b ) = ( ( rec ( G , (/) ) ` suc suc b ) |` ( R1 ` suc b ) ) ) ) |
| 21 | fveq2 | |- ( a = A -> ( rec ( G , (/) ) ` a ) = ( rec ( G , (/) ) ` A ) ) |
|
| 22 | suceq | |- ( a = A -> suc a = suc A ) |
|
| 23 | 22 | fveq2d | |- ( a = A -> ( rec ( G , (/) ) ` suc a ) = ( rec ( G , (/) ) ` suc A ) ) |
| 24 | fveq2 | |- ( a = A -> ( R1 ` a ) = ( R1 ` A ) ) |
|
| 25 | 23 24 | reseq12d | |- ( a = A -> ( ( rec ( G , (/) ) ` suc a ) |` ( R1 ` a ) ) = ( ( rec ( G , (/) ) ` suc A ) |` ( R1 ` A ) ) ) |
| 26 | 21 25 | eqeq12d | |- ( a = A -> ( ( rec ( G , (/) ) ` a ) = ( ( rec ( G , (/) ) ` suc a ) |` ( R1 ` a ) ) <-> ( rec ( G , (/) ) ` A ) = ( ( rec ( G , (/) ) ` suc A ) |` ( R1 ` A ) ) ) ) |
| 27 | res0 | |- ( ( rec ( G , (/) ) ` suc (/) ) |` (/) ) = (/) |
|
| 28 | r10 | |- ( R1 ` (/) ) = (/) |
|
| 29 | 28 | reseq2i | |- ( ( rec ( G , (/) ) ` suc (/) ) |` ( R1 ` (/) ) ) = ( ( rec ( G , (/) ) ` suc (/) ) |` (/) ) |
| 30 | 0ex | |- (/) e. _V |
|
| 31 | 30 | rdg0 | |- ( rec ( G , (/) ) ` (/) ) = (/) |
| 32 | 27 29 31 | 3eqtr4ri | |- ( rec ( G , (/) ) ` (/) ) = ( ( rec ( G , (/) ) ` suc (/) ) |` ( R1 ` (/) ) ) |
| 33 | peano2 | |- ( b e. _om -> suc b e. _om ) |
|
| 34 | 1 2 | ackbij2lem2 | |- ( suc b e. _om -> ( rec ( G , (/) ) ` suc b ) : ( R1 ` suc b ) -1-1-onto-> ( card ` ( R1 ` suc b ) ) ) |
| 35 | 33 34 | syl | |- ( b e. _om -> ( rec ( G , (/) ) ` suc b ) : ( R1 ` suc b ) -1-1-onto-> ( card ` ( R1 ` suc b ) ) ) |
| 36 | f1ofn | |- ( ( rec ( G , (/) ) ` suc b ) : ( R1 ` suc b ) -1-1-onto-> ( card ` ( R1 ` suc b ) ) -> ( rec ( G , (/) ) ` suc b ) Fn ( R1 ` suc b ) ) |
|
| 37 | 35 36 | syl | |- ( b e. _om -> ( rec ( G , (/) ) ` suc b ) Fn ( R1 ` suc b ) ) |
| 38 | 37 | adantr | |- ( ( b e. _om /\ ( rec ( G , (/) ) ` b ) = ( ( rec ( G , (/) ) ` suc b ) |` ( R1 ` b ) ) ) -> ( rec ( G , (/) ) ` suc b ) Fn ( R1 ` suc b ) ) |
| 39 | peano2 | |- ( suc b e. _om -> suc suc b e. _om ) |
|
| 40 | 1 2 | ackbij2lem2 | |- ( suc suc b e. _om -> ( rec ( G , (/) ) ` suc suc b ) : ( R1 ` suc suc b ) -1-1-onto-> ( card ` ( R1 ` suc suc b ) ) ) |
| 41 | f1ofn | |- ( ( rec ( G , (/) ) ` suc suc b ) : ( R1 ` suc suc b ) -1-1-onto-> ( card ` ( R1 ` suc suc b ) ) -> ( rec ( G , (/) ) ` suc suc b ) Fn ( R1 ` suc suc b ) ) |
|
| 42 | 33 39 40 41 | 4syl | |- ( b e. _om -> ( rec ( G , (/) ) ` suc suc b ) Fn ( R1 ` suc suc b ) ) |
| 43 | nnon | |- ( suc b e. _om -> suc b e. On ) |
|
| 44 | 33 43 | syl | |- ( b e. _om -> suc b e. On ) |
| 45 | r1sssuc | |- ( suc b e. On -> ( R1 ` suc b ) C_ ( R1 ` suc suc b ) ) |
|
| 46 | 44 45 | syl | |- ( b e. _om -> ( R1 ` suc b ) C_ ( R1 ` suc suc b ) ) |
| 47 | fnssres | |- ( ( ( rec ( G , (/) ) ` suc suc b ) Fn ( R1 ` suc suc b ) /\ ( R1 ` suc b ) C_ ( R1 ` suc suc b ) ) -> ( ( rec ( G , (/) ) ` suc suc b ) |` ( R1 ` suc b ) ) Fn ( R1 ` suc b ) ) |
|
| 48 | 42 46 47 | syl2anc | |- ( b e. _om -> ( ( rec ( G , (/) ) ` suc suc b ) |` ( R1 ` suc b ) ) Fn ( R1 ` suc b ) ) |
| 49 | 48 | adantr | |- ( ( b e. _om /\ ( rec ( G , (/) ) ` b ) = ( ( rec ( G , (/) ) ` suc b ) |` ( R1 ` b ) ) ) -> ( ( rec ( G , (/) ) ` suc suc b ) |` ( R1 ` suc b ) ) Fn ( R1 ` suc b ) ) |
| 50 | nnon | |- ( b e. _om -> b e. On ) |
|
| 51 | r1suc | |- ( b e. On -> ( R1 ` suc b ) = ~P ( R1 ` b ) ) |
|
| 52 | 50 51 | syl | |- ( b e. _om -> ( R1 ` suc b ) = ~P ( R1 ` b ) ) |
| 53 | 52 | eleq2d | |- ( b e. _om -> ( c e. ( R1 ` suc b ) <-> c e. ~P ( R1 ` b ) ) ) |
| 54 | 53 | biimpa | |- ( ( b e. _om /\ c e. ( R1 ` suc b ) ) -> c e. ~P ( R1 ` b ) ) |
| 55 | 54 | elpwid | |- ( ( b e. _om /\ c e. ( R1 ` suc b ) ) -> c C_ ( R1 ` b ) ) |
| 56 | resima2 | |- ( c C_ ( R1 ` b ) -> ( ( ( rec ( G , (/) ) ` suc b ) |` ( R1 ` b ) ) " c ) = ( ( rec ( G , (/) ) ` suc b ) " c ) ) |
|
| 57 | 55 56 | syl | |- ( ( b e. _om /\ c e. ( R1 ` suc b ) ) -> ( ( ( rec ( G , (/) ) ` suc b ) |` ( R1 ` b ) ) " c ) = ( ( rec ( G , (/) ) ` suc b ) " c ) ) |
| 58 | 57 | fveq2d | |- ( ( b e. _om /\ c e. ( R1 ` suc b ) ) -> ( F ` ( ( ( rec ( G , (/) ) ` suc b ) |` ( R1 ` b ) ) " c ) ) = ( F ` ( ( rec ( G , (/) ) ` suc b ) " c ) ) ) |
| 59 | fvex | |- ( rec ( G , (/) ) ` suc b ) e. _V |
|
| 60 | 59 | resex | |- ( ( rec ( G , (/) ) ` suc b ) |` ( R1 ` b ) ) e. _V |
| 61 | dmeq | |- ( x = ( ( rec ( G , (/) ) ` suc b ) |` ( R1 ` b ) ) -> dom x = dom ( ( rec ( G , (/) ) ` suc b ) |` ( R1 ` b ) ) ) |
|
| 62 | 61 | pweqd | |- ( x = ( ( rec ( G , (/) ) ` suc b ) |` ( R1 ` b ) ) -> ~P dom x = ~P dom ( ( rec ( G , (/) ) ` suc b ) |` ( R1 ` b ) ) ) |
| 63 | imaeq1 | |- ( x = ( ( rec ( G , (/) ) ` suc b ) |` ( R1 ` b ) ) -> ( x " y ) = ( ( ( rec ( G , (/) ) ` suc b ) |` ( R1 ` b ) ) " y ) ) |
|
| 64 | 63 | fveq2d | |- ( x = ( ( rec ( G , (/) ) ` suc b ) |` ( R1 ` b ) ) -> ( F ` ( x " y ) ) = ( F ` ( ( ( rec ( G , (/) ) ` suc b ) |` ( R1 ` b ) ) " y ) ) ) |
| 65 | 62 64 | mpteq12dv | |- ( x = ( ( rec ( G , (/) ) ` suc b ) |` ( R1 ` b ) ) -> ( y e. ~P dom x |-> ( F ` ( x " y ) ) ) = ( y e. ~P dom ( ( rec ( G , (/) ) ` suc b ) |` ( R1 ` b ) ) |-> ( F ` ( ( ( rec ( G , (/) ) ` suc b ) |` ( R1 ` b ) ) " y ) ) ) ) |
| 66 | 60 | dmex | |- dom ( ( rec ( G , (/) ) ` suc b ) |` ( R1 ` b ) ) e. _V |
| 67 | 66 | pwex | |- ~P dom ( ( rec ( G , (/) ) ` suc b ) |` ( R1 ` b ) ) e. _V |
| 68 | 67 | mptex | |- ( y e. ~P dom ( ( rec ( G , (/) ) ` suc b ) |` ( R1 ` b ) ) |-> ( F ` ( ( ( rec ( G , (/) ) ` suc b ) |` ( R1 ` b ) ) " y ) ) ) e. _V |
| 69 | 65 2 68 | fvmpt | |- ( ( ( rec ( G , (/) ) ` suc b ) |` ( R1 ` b ) ) e. _V -> ( G ` ( ( rec ( G , (/) ) ` suc b ) |` ( R1 ` b ) ) ) = ( y e. ~P dom ( ( rec ( G , (/) ) ` suc b ) |` ( R1 ` b ) ) |-> ( F ` ( ( ( rec ( G , (/) ) ` suc b ) |` ( R1 ` b ) ) " y ) ) ) ) |
| 70 | 60 69 | ax-mp | |- ( G ` ( ( rec ( G , (/) ) ` suc b ) |` ( R1 ` b ) ) ) = ( y e. ~P dom ( ( rec ( G , (/) ) ` suc b ) |` ( R1 ` b ) ) |-> ( F ` ( ( ( rec ( G , (/) ) ` suc b ) |` ( R1 ` b ) ) " y ) ) ) |
| 71 | 70 | fveq1i | |- ( ( G ` ( ( rec ( G , (/) ) ` suc b ) |` ( R1 ` b ) ) ) ` c ) = ( ( y e. ~P dom ( ( rec ( G , (/) ) ` suc b ) |` ( R1 ` b ) ) |-> ( F ` ( ( ( rec ( G , (/) ) ` suc b ) |` ( R1 ` b ) ) " y ) ) ) ` c ) |
| 72 | r1sssuc | |- ( b e. On -> ( R1 ` b ) C_ ( R1 ` suc b ) ) |
|
| 73 | 50 72 | syl | |- ( b e. _om -> ( R1 ` b ) C_ ( R1 ` suc b ) ) |
| 74 | fnssres | |- ( ( ( rec ( G , (/) ) ` suc b ) Fn ( R1 ` suc b ) /\ ( R1 ` b ) C_ ( R1 ` suc b ) ) -> ( ( rec ( G , (/) ) ` suc b ) |` ( R1 ` b ) ) Fn ( R1 ` b ) ) |
|
| 75 | 37 73 74 | syl2anc | |- ( b e. _om -> ( ( rec ( G , (/) ) ` suc b ) |` ( R1 ` b ) ) Fn ( R1 ` b ) ) |
| 76 | 75 | fndmd | |- ( b e. _om -> dom ( ( rec ( G , (/) ) ` suc b ) |` ( R1 ` b ) ) = ( R1 ` b ) ) |
| 77 | 76 | pweqd | |- ( b e. _om -> ~P dom ( ( rec ( G , (/) ) ` suc b ) |` ( R1 ` b ) ) = ~P ( R1 ` b ) ) |
| 78 | 77 | adantr | |- ( ( b e. _om /\ c e. ( R1 ` suc b ) ) -> ~P dom ( ( rec ( G , (/) ) ` suc b ) |` ( R1 ` b ) ) = ~P ( R1 ` b ) ) |
| 79 | 54 78 | eleqtrrd | |- ( ( b e. _om /\ c e. ( R1 ` suc b ) ) -> c e. ~P dom ( ( rec ( G , (/) ) ` suc b ) |` ( R1 ` b ) ) ) |
| 80 | imaeq2 | |- ( y = c -> ( ( ( rec ( G , (/) ) ` suc b ) |` ( R1 ` b ) ) " y ) = ( ( ( rec ( G , (/) ) ` suc b ) |` ( R1 ` b ) ) " c ) ) |
|
| 81 | 80 | fveq2d | |- ( y = c -> ( F ` ( ( ( rec ( G , (/) ) ` suc b ) |` ( R1 ` b ) ) " y ) ) = ( F ` ( ( ( rec ( G , (/) ) ` suc b ) |` ( R1 ` b ) ) " c ) ) ) |
| 82 | eqid | |- ( y e. ~P dom ( ( rec ( G , (/) ) ` suc b ) |` ( R1 ` b ) ) |-> ( F ` ( ( ( rec ( G , (/) ) ` suc b ) |` ( R1 ` b ) ) " y ) ) ) = ( y e. ~P dom ( ( rec ( G , (/) ) ` suc b ) |` ( R1 ` b ) ) |-> ( F ` ( ( ( rec ( G , (/) ) ` suc b ) |` ( R1 ` b ) ) " y ) ) ) |
|
| 83 | fvex | |- ( F ` ( ( ( rec ( G , (/) ) ` suc b ) |` ( R1 ` b ) ) " c ) ) e. _V |
|
| 84 | 81 82 83 | fvmpt | |- ( c e. ~P dom ( ( rec ( G , (/) ) ` suc b ) |` ( R1 ` b ) ) -> ( ( y e. ~P dom ( ( rec ( G , (/) ) ` suc b ) |` ( R1 ` b ) ) |-> ( F ` ( ( ( rec ( G , (/) ) ` suc b ) |` ( R1 ` b ) ) " y ) ) ) ` c ) = ( F ` ( ( ( rec ( G , (/) ) ` suc b ) |` ( R1 ` b ) ) " c ) ) ) |
| 85 | 79 84 | syl | |- ( ( b e. _om /\ c e. ( R1 ` suc b ) ) -> ( ( y e. ~P dom ( ( rec ( G , (/) ) ` suc b ) |` ( R1 ` b ) ) |-> ( F ` ( ( ( rec ( G , (/) ) ` suc b ) |` ( R1 ` b ) ) " y ) ) ) ` c ) = ( F ` ( ( ( rec ( G , (/) ) ` suc b ) |` ( R1 ` b ) ) " c ) ) ) |
| 86 | 71 85 | eqtrid | |- ( ( b e. _om /\ c e. ( R1 ` suc b ) ) -> ( ( G ` ( ( rec ( G , (/) ) ` suc b ) |` ( R1 ` b ) ) ) ` c ) = ( F ` ( ( ( rec ( G , (/) ) ` suc b ) |` ( R1 ` b ) ) " c ) ) ) |
| 87 | dmeq | |- ( x = ( rec ( G , (/) ) ` suc b ) -> dom x = dom ( rec ( G , (/) ) ` suc b ) ) |
|
| 88 | 87 | pweqd | |- ( x = ( rec ( G , (/) ) ` suc b ) -> ~P dom x = ~P dom ( rec ( G , (/) ) ` suc b ) ) |
| 89 | imaeq1 | |- ( x = ( rec ( G , (/) ) ` suc b ) -> ( x " y ) = ( ( rec ( G , (/) ) ` suc b ) " y ) ) |
|
| 90 | 89 | fveq2d | |- ( x = ( rec ( G , (/) ) ` suc b ) -> ( F ` ( x " y ) ) = ( F ` ( ( rec ( G , (/) ) ` suc b ) " y ) ) ) |
| 91 | 88 90 | mpteq12dv | |- ( x = ( rec ( G , (/) ) ` suc b ) -> ( y e. ~P dom x |-> ( F ` ( x " y ) ) ) = ( y e. ~P dom ( rec ( G , (/) ) ` suc b ) |-> ( F ` ( ( rec ( G , (/) ) ` suc b ) " y ) ) ) ) |
| 92 | 59 | dmex | |- dom ( rec ( G , (/) ) ` suc b ) e. _V |
| 93 | 92 | pwex | |- ~P dom ( rec ( G , (/) ) ` suc b ) e. _V |
| 94 | 93 | mptex | |- ( y e. ~P dom ( rec ( G , (/) ) ` suc b ) |-> ( F ` ( ( rec ( G , (/) ) ` suc b ) " y ) ) ) e. _V |
| 95 | 91 2 94 | fvmpt | |- ( ( rec ( G , (/) ) ` suc b ) e. _V -> ( G ` ( rec ( G , (/) ) ` suc b ) ) = ( y e. ~P dom ( rec ( G , (/) ) ` suc b ) |-> ( F ` ( ( rec ( G , (/) ) ` suc b ) " y ) ) ) ) |
| 96 | 59 95 | ax-mp | |- ( G ` ( rec ( G , (/) ) ` suc b ) ) = ( y e. ~P dom ( rec ( G , (/) ) ` suc b ) |-> ( F ` ( ( rec ( G , (/) ) ` suc b ) " y ) ) ) |
| 97 | 96 | fveq1i | |- ( ( G ` ( rec ( G , (/) ) ` suc b ) ) ` c ) = ( ( y e. ~P dom ( rec ( G , (/) ) ` suc b ) |-> ( F ` ( ( rec ( G , (/) ) ` suc b ) " y ) ) ) ` c ) |
| 98 | r1tr | |- Tr ( R1 ` suc b ) |
|
| 99 | 98 | a1i | |- ( b e. _om -> Tr ( R1 ` suc b ) ) |
| 100 | dftr4 | |- ( Tr ( R1 ` suc b ) <-> ( R1 ` suc b ) C_ ~P ( R1 ` suc b ) ) |
|
| 101 | 99 100 | sylib | |- ( b e. _om -> ( R1 ` suc b ) C_ ~P ( R1 ` suc b ) ) |
| 102 | 101 | sselda | |- ( ( b e. _om /\ c e. ( R1 ` suc b ) ) -> c e. ~P ( R1 ` suc b ) ) |
| 103 | f1odm | |- ( ( rec ( G , (/) ) ` suc b ) : ( R1 ` suc b ) -1-1-onto-> ( card ` ( R1 ` suc b ) ) -> dom ( rec ( G , (/) ) ` suc b ) = ( R1 ` suc b ) ) |
|
| 104 | 35 103 | syl | |- ( b e. _om -> dom ( rec ( G , (/) ) ` suc b ) = ( R1 ` suc b ) ) |
| 105 | 104 | pweqd | |- ( b e. _om -> ~P dom ( rec ( G , (/) ) ` suc b ) = ~P ( R1 ` suc b ) ) |
| 106 | 105 | adantr | |- ( ( b e. _om /\ c e. ( R1 ` suc b ) ) -> ~P dom ( rec ( G , (/) ) ` suc b ) = ~P ( R1 ` suc b ) ) |
| 107 | 102 106 | eleqtrrd | |- ( ( b e. _om /\ c e. ( R1 ` suc b ) ) -> c e. ~P dom ( rec ( G , (/) ) ` suc b ) ) |
| 108 | imaeq2 | |- ( y = c -> ( ( rec ( G , (/) ) ` suc b ) " y ) = ( ( rec ( G , (/) ) ` suc b ) " c ) ) |
|
| 109 | 108 | fveq2d | |- ( y = c -> ( F ` ( ( rec ( G , (/) ) ` suc b ) " y ) ) = ( F ` ( ( rec ( G , (/) ) ` suc b ) " c ) ) ) |
| 110 | eqid | |- ( y e. ~P dom ( rec ( G , (/) ) ` suc b ) |-> ( F ` ( ( rec ( G , (/) ) ` suc b ) " y ) ) ) = ( y e. ~P dom ( rec ( G , (/) ) ` suc b ) |-> ( F ` ( ( rec ( G , (/) ) ` suc b ) " y ) ) ) |
|
| 111 | fvex | |- ( F ` ( ( rec ( G , (/) ) ` suc b ) " c ) ) e. _V |
|
| 112 | 109 110 111 | fvmpt | |- ( c e. ~P dom ( rec ( G , (/) ) ` suc b ) -> ( ( y e. ~P dom ( rec ( G , (/) ) ` suc b ) |-> ( F ` ( ( rec ( G , (/) ) ` suc b ) " y ) ) ) ` c ) = ( F ` ( ( rec ( G , (/) ) ` suc b ) " c ) ) ) |
| 113 | 107 112 | syl | |- ( ( b e. _om /\ c e. ( R1 ` suc b ) ) -> ( ( y e. ~P dom ( rec ( G , (/) ) ` suc b ) |-> ( F ` ( ( rec ( G , (/) ) ` suc b ) " y ) ) ) ` c ) = ( F ` ( ( rec ( G , (/) ) ` suc b ) " c ) ) ) |
| 114 | 97 113 | eqtrid | |- ( ( b e. _om /\ c e. ( R1 ` suc b ) ) -> ( ( G ` ( rec ( G , (/) ) ` suc b ) ) ` c ) = ( F ` ( ( rec ( G , (/) ) ` suc b ) " c ) ) ) |
| 115 | 58 86 114 | 3eqtr4d | |- ( ( b e. _om /\ c e. ( R1 ` suc b ) ) -> ( ( G ` ( ( rec ( G , (/) ) ` suc b ) |` ( R1 ` b ) ) ) ` c ) = ( ( G ` ( rec ( G , (/) ) ` suc b ) ) ` c ) ) |
| 116 | 115 | adantlr | |- ( ( ( b e. _om /\ ( rec ( G , (/) ) ` b ) = ( ( rec ( G , (/) ) ` suc b ) |` ( R1 ` b ) ) ) /\ c e. ( R1 ` suc b ) ) -> ( ( G ` ( ( rec ( G , (/) ) ` suc b ) |` ( R1 ` b ) ) ) ` c ) = ( ( G ` ( rec ( G , (/) ) ` suc b ) ) ` c ) ) |
| 117 | fveq2 | |- ( ( rec ( G , (/) ) ` b ) = ( ( rec ( G , (/) ) ` suc b ) |` ( R1 ` b ) ) -> ( G ` ( rec ( G , (/) ) ` b ) ) = ( G ` ( ( rec ( G , (/) ) ` suc b ) |` ( R1 ` b ) ) ) ) |
|
| 118 | 117 | fveq1d | |- ( ( rec ( G , (/) ) ` b ) = ( ( rec ( G , (/) ) ` suc b ) |` ( R1 ` b ) ) -> ( ( G ` ( rec ( G , (/) ) ` b ) ) ` c ) = ( ( G ` ( ( rec ( G , (/) ) ` suc b ) |` ( R1 ` b ) ) ) ` c ) ) |
| 119 | 118 | ad2antlr | |- ( ( ( b e. _om /\ ( rec ( G , (/) ) ` b ) = ( ( rec ( G , (/) ) ` suc b ) |` ( R1 ` b ) ) ) /\ c e. ( R1 ` suc b ) ) -> ( ( G ` ( rec ( G , (/) ) ` b ) ) ` c ) = ( ( G ` ( ( rec ( G , (/) ) ` suc b ) |` ( R1 ` b ) ) ) ` c ) ) |
| 120 | rdgsuc | |- ( suc b e. On -> ( rec ( G , (/) ) ` suc suc b ) = ( G ` ( rec ( G , (/) ) ` suc b ) ) ) |
|
| 121 | 44 120 | syl | |- ( b e. _om -> ( rec ( G , (/) ) ` suc suc b ) = ( G ` ( rec ( G , (/) ) ` suc b ) ) ) |
| 122 | 121 | fveq1d | |- ( b e. _om -> ( ( rec ( G , (/) ) ` suc suc b ) ` c ) = ( ( G ` ( rec ( G , (/) ) ` suc b ) ) ` c ) ) |
| 123 | 122 | ad2antrr | |- ( ( ( b e. _om /\ ( rec ( G , (/) ) ` b ) = ( ( rec ( G , (/) ) ` suc b ) |` ( R1 ` b ) ) ) /\ c e. ( R1 ` suc b ) ) -> ( ( rec ( G , (/) ) ` suc suc b ) ` c ) = ( ( G ` ( rec ( G , (/) ) ` suc b ) ) ` c ) ) |
| 124 | 116 119 123 | 3eqtr4rd | |- ( ( ( b e. _om /\ ( rec ( G , (/) ) ` b ) = ( ( rec ( G , (/) ) ` suc b ) |` ( R1 ` b ) ) ) /\ c e. ( R1 ` suc b ) ) -> ( ( rec ( G , (/) ) ` suc suc b ) ` c ) = ( ( G ` ( rec ( G , (/) ) ` b ) ) ` c ) ) |
| 125 | fvres | |- ( c e. ( R1 ` suc b ) -> ( ( ( rec ( G , (/) ) ` suc suc b ) |` ( R1 ` suc b ) ) ` c ) = ( ( rec ( G , (/) ) ` suc suc b ) ` c ) ) |
|
| 126 | 125 | adantl | |- ( ( ( b e. _om /\ ( rec ( G , (/) ) ` b ) = ( ( rec ( G , (/) ) ` suc b ) |` ( R1 ` b ) ) ) /\ c e. ( R1 ` suc b ) ) -> ( ( ( rec ( G , (/) ) ` suc suc b ) |` ( R1 ` suc b ) ) ` c ) = ( ( rec ( G , (/) ) ` suc suc b ) ` c ) ) |
| 127 | rdgsuc | |- ( b e. On -> ( rec ( G , (/) ) ` suc b ) = ( G ` ( rec ( G , (/) ) ` b ) ) ) |
|
| 128 | 50 127 | syl | |- ( b e. _om -> ( rec ( G , (/) ) ` suc b ) = ( G ` ( rec ( G , (/) ) ` b ) ) ) |
| 129 | 128 | fveq1d | |- ( b e. _om -> ( ( rec ( G , (/) ) ` suc b ) ` c ) = ( ( G ` ( rec ( G , (/) ) ` b ) ) ` c ) ) |
| 130 | 129 | ad2antrr | |- ( ( ( b e. _om /\ ( rec ( G , (/) ) ` b ) = ( ( rec ( G , (/) ) ` suc b ) |` ( R1 ` b ) ) ) /\ c e. ( R1 ` suc b ) ) -> ( ( rec ( G , (/) ) ` suc b ) ` c ) = ( ( G ` ( rec ( G , (/) ) ` b ) ) ` c ) ) |
| 131 | 124 126 130 | 3eqtr4rd | |- ( ( ( b e. _om /\ ( rec ( G , (/) ) ` b ) = ( ( rec ( G , (/) ) ` suc b ) |` ( R1 ` b ) ) ) /\ c e. ( R1 ` suc b ) ) -> ( ( rec ( G , (/) ) ` suc b ) ` c ) = ( ( ( rec ( G , (/) ) ` suc suc b ) |` ( R1 ` suc b ) ) ` c ) ) |
| 132 | 38 49 131 | eqfnfvd | |- ( ( b e. _om /\ ( rec ( G , (/) ) ` b ) = ( ( rec ( G , (/) ) ` suc b ) |` ( R1 ` b ) ) ) -> ( rec ( G , (/) ) ` suc b ) = ( ( rec ( G , (/) ) ` suc suc b ) |` ( R1 ` suc b ) ) ) |
| 133 | 132 | ex | |- ( b e. _om -> ( ( rec ( G , (/) ) ` b ) = ( ( rec ( G , (/) ) ` suc b ) |` ( R1 ` b ) ) -> ( rec ( G , (/) ) ` suc b ) = ( ( rec ( G , (/) ) ` suc suc b ) |` ( R1 ` suc b ) ) ) ) |
| 134 | 8 14 20 26 32 133 | finds | |- ( A e. _om -> ( rec ( G , (/) ) ` A ) = ( ( rec ( G , (/) ) ` suc A ) |` ( R1 ` A ) ) ) |
| 135 | resss | |- ( ( rec ( G , (/) ) ` suc A ) |` ( R1 ` A ) ) C_ ( rec ( G , (/) ) ` suc A ) |
|
| 136 | 134 135 | eqsstrdi | |- ( A e. _om -> ( rec ( G , (/) ) ` A ) C_ ( rec ( G , (/) ) ` suc A ) ) |