This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ackbij2 . (Contributed by Stefan O'Rear, 18-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ackbij2lem1 | |- ( A e. _om -> ~P A C_ ( ~P _om i^i Fin ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordom | |- Ord _om |
|
| 2 | ordelss | |- ( ( Ord _om /\ A e. _om ) -> A C_ _om ) |
|
| 3 | 1 2 | mpan | |- ( A e. _om -> A C_ _om ) |
| 4 | 3 | sspwd | |- ( A e. _om -> ~P A C_ ~P _om ) |
| 5 | 4 | sselda | |- ( ( A e. _om /\ a e. ~P A ) -> a e. ~P _om ) |
| 6 | nnfi | |- ( A e. _om -> A e. Fin ) |
|
| 7 | elpwi | |- ( a e. ~P A -> a C_ A ) |
|
| 8 | ssfi | |- ( ( A e. Fin /\ a C_ A ) -> a e. Fin ) |
|
| 9 | 6 7 8 | syl2an | |- ( ( A e. _om /\ a e. ~P A ) -> a e. Fin ) |
| 10 | 5 9 | elind | |- ( ( A e. _om /\ a e. ~P A ) -> a e. ( ~P _om i^i Fin ) ) |
| 11 | 10 | ex | |- ( A e. _om -> ( a e. ~P A -> a e. ( ~P _om i^i Fin ) ) ) |
| 12 | 11 | ssrdv | |- ( A e. _om -> ~P A C_ ( ~P _om i^i Fin ) ) |