This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A one-to-one mapping induces a one-to-one mapping on power sets. (Contributed by Stefan O'Rear, 18-Nov-2014) (Revised by Mario Carneiro, 26-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | f1opw | |- ( F : A -1-1-onto-> B -> ( b e. ~P A |-> ( F " b ) ) : ~P A -1-1-onto-> ~P B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id | |- ( F : A -1-1-onto-> B -> F : A -1-1-onto-> B ) |
|
| 2 | dff1o3 | |- ( F : A -1-1-onto-> B <-> ( F : A -onto-> B /\ Fun `' F ) ) |
|
| 3 | vex | |- a e. _V |
|
| 4 | 3 | funimaex | |- ( Fun `' F -> ( `' F " a ) e. _V ) |
| 5 | 2 4 | simplbiim | |- ( F : A -1-1-onto-> B -> ( `' F " a ) e. _V ) |
| 6 | f1ofun | |- ( F : A -1-1-onto-> B -> Fun F ) |
|
| 7 | vex | |- b e. _V |
|
| 8 | 7 | funimaex | |- ( Fun F -> ( F " b ) e. _V ) |
| 9 | 6 8 | syl | |- ( F : A -1-1-onto-> B -> ( F " b ) e. _V ) |
| 10 | 1 5 9 | f1opw2 | |- ( F : A -1-1-onto-> B -> ( b e. ~P A |-> ( F " b ) ) : ~P A -1-1-onto-> ~P B ) |