This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ackbij1 . (Contributed by Stefan O'Rear, 18-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ackbij.f | |- F = ( x e. ( ~P _om i^i Fin ) |-> ( card ` U_ y e. x ( { y } X. ~P y ) ) ) |
|
| Assertion | ackbij1lem17 | |- F : ( ~P _om i^i Fin ) -1-1-> _om |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ackbij.f | |- F = ( x e. ( ~P _om i^i Fin ) |-> ( card ` U_ y e. x ( { y } X. ~P y ) ) ) |
|
| 2 | 1 | ackbij1lem10 | |- F : ( ~P _om i^i Fin ) --> _om |
| 3 | 1 | ackbij1lem16 | |- ( ( a e. ( ~P _om i^i Fin ) /\ b e. ( ~P _om i^i Fin ) ) -> ( ( F ` a ) = ( F ` b ) -> a = b ) ) |
| 4 | 3 | rgen2 | |- A. a e. ( ~P _om i^i Fin ) A. b e. ( ~P _om i^i Fin ) ( ( F ` a ) = ( F ` b ) -> a = b ) |
| 5 | dff13 | |- ( F : ( ~P _om i^i Fin ) -1-1-> _om <-> ( F : ( ~P _om i^i Fin ) --> _om /\ A. a e. ( ~P _om i^i Fin ) A. b e. ( ~P _om i^i Fin ) ( ( F ` a ) = ( F ` b ) -> a = b ) ) ) |
|
| 6 | 2 4 5 | mpbir2an | |- F : ( ~P _om i^i Fin ) -1-1-> _om |