This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ackbij1 . (Contributed by Stefan O'Rear, 19-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ackbij.f | |- F = ( x e. ( ~P _om i^i Fin ) |-> ( card ` U_ y e. x ( { y } X. ~P y ) ) ) |
|
| Assertion | ackbij1lem8 | |- ( A e. _om -> ( F ` { A } ) = ( card ` ~P A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ackbij.f | |- F = ( x e. ( ~P _om i^i Fin ) |-> ( card ` U_ y e. x ( { y } X. ~P y ) ) ) |
|
| 2 | sneq | |- ( a = A -> { a } = { A } ) |
|
| 3 | 2 | fveq2d | |- ( a = A -> ( F ` { a } ) = ( F ` { A } ) ) |
| 4 | pweq | |- ( a = A -> ~P a = ~P A ) |
|
| 5 | 4 | fveq2d | |- ( a = A -> ( card ` ~P a ) = ( card ` ~P A ) ) |
| 6 | 3 5 | eqeq12d | |- ( a = A -> ( ( F ` { a } ) = ( card ` ~P a ) <-> ( F ` { A } ) = ( card ` ~P A ) ) ) |
| 7 | ackbij1lem4 | |- ( a e. _om -> { a } e. ( ~P _om i^i Fin ) ) |
|
| 8 | 1 | ackbij1lem7 | |- ( { a } e. ( ~P _om i^i Fin ) -> ( F ` { a } ) = ( card ` U_ y e. { a } ( { y } X. ~P y ) ) ) |
| 9 | 7 8 | syl | |- ( a e. _om -> ( F ` { a } ) = ( card ` U_ y e. { a } ( { y } X. ~P y ) ) ) |
| 10 | vex | |- a e. _V |
|
| 11 | sneq | |- ( y = a -> { y } = { a } ) |
|
| 12 | pweq | |- ( y = a -> ~P y = ~P a ) |
|
| 13 | 11 12 | xpeq12d | |- ( y = a -> ( { y } X. ~P y ) = ( { a } X. ~P a ) ) |
| 14 | 10 13 | iunxsn | |- U_ y e. { a } ( { y } X. ~P y ) = ( { a } X. ~P a ) |
| 15 | 14 | fveq2i | |- ( card ` U_ y e. { a } ( { y } X. ~P y ) ) = ( card ` ( { a } X. ~P a ) ) |
| 16 | vpwex | |- ~P a e. _V |
|
| 17 | xpsnen2g | |- ( ( a e. _V /\ ~P a e. _V ) -> ( { a } X. ~P a ) ~~ ~P a ) |
|
| 18 | 10 16 17 | mp2an | |- ( { a } X. ~P a ) ~~ ~P a |
| 19 | carden2b | |- ( ( { a } X. ~P a ) ~~ ~P a -> ( card ` ( { a } X. ~P a ) ) = ( card ` ~P a ) ) |
|
| 20 | 18 19 | ax-mp | |- ( card ` ( { a } X. ~P a ) ) = ( card ` ~P a ) |
| 21 | 15 20 | eqtri | |- ( card ` U_ y e. { a } ( { y } X. ~P y ) ) = ( card ` ~P a ) |
| 22 | 9 21 | eqtrdi | |- ( a e. _om -> ( F ` { a } ) = ( card ` ~P a ) ) |
| 23 | 6 22 | vtoclga | |- ( A e. _om -> ( F ` { A } ) = ( card ` ~P A ) ) |