This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The subclass relationship between two ordinal classes is inherited by their successors. (Contributed by NM, 4-Oct-2003)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ordsucsssuc | |- ( ( Ord A /\ Ord B ) -> ( A C_ B <-> suc A C_ suc B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordsucelsuc | |- ( Ord A -> ( B e. A <-> suc B e. suc A ) ) |
|
| 2 | 1 | notbid | |- ( Ord A -> ( -. B e. A <-> -. suc B e. suc A ) ) |
| 3 | 2 | adantr | |- ( ( Ord A /\ Ord B ) -> ( -. B e. A <-> -. suc B e. suc A ) ) |
| 4 | ordtri1 | |- ( ( Ord A /\ Ord B ) -> ( A C_ B <-> -. B e. A ) ) |
|
| 5 | ordsuc | |- ( Ord A <-> Ord suc A ) |
|
| 6 | ordsuc | |- ( Ord B <-> Ord suc B ) |
|
| 7 | ordtri1 | |- ( ( Ord suc A /\ Ord suc B ) -> ( suc A C_ suc B <-> -. suc B e. suc A ) ) |
|
| 8 | 5 6 7 | syl2anb | |- ( ( Ord A /\ Ord B ) -> ( suc A C_ suc B <-> -. suc B e. suc A ) ) |
| 9 | 3 4 8 | 3bitr4d | |- ( ( Ord A /\ Ord B ) -> ( A C_ B <-> suc A C_ suc B ) ) |