This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ackbij1 . (Contributed by Stefan O'Rear, 18-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ackbij.f | |- F = ( x e. ( ~P _om i^i Fin ) |-> ( card ` U_ y e. x ( { y } X. ~P y ) ) ) |
|
| Assertion | ackbij1lem12 | |- ( ( B e. ( ~P _om i^i Fin ) /\ A C_ B ) -> ( F ` A ) C_ ( F ` B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ackbij.f | |- F = ( x e. ( ~P _om i^i Fin ) |-> ( card ` U_ y e. x ( { y } X. ~P y ) ) ) |
|
| 2 | 1 | ackbij1lem10 | |- F : ( ~P _om i^i Fin ) --> _om |
| 3 | 1 | ackbij1lem11 | |- ( ( B e. ( ~P _om i^i Fin ) /\ A C_ B ) -> A e. ( ~P _om i^i Fin ) ) |
| 4 | ffvelcdm | |- ( ( F : ( ~P _om i^i Fin ) --> _om /\ A e. ( ~P _om i^i Fin ) ) -> ( F ` A ) e. _om ) |
|
| 5 | 2 3 4 | sylancr | |- ( ( B e. ( ~P _om i^i Fin ) /\ A C_ B ) -> ( F ` A ) e. _om ) |
| 6 | difssd | |- ( ( B e. ( ~P _om i^i Fin ) /\ A C_ B ) -> ( B \ A ) C_ B ) |
|
| 7 | 1 | ackbij1lem11 | |- ( ( B e. ( ~P _om i^i Fin ) /\ ( B \ A ) C_ B ) -> ( B \ A ) e. ( ~P _om i^i Fin ) ) |
| 8 | 6 7 | syldan | |- ( ( B e. ( ~P _om i^i Fin ) /\ A C_ B ) -> ( B \ A ) e. ( ~P _om i^i Fin ) ) |
| 9 | ffvelcdm | |- ( ( F : ( ~P _om i^i Fin ) --> _om /\ ( B \ A ) e. ( ~P _om i^i Fin ) ) -> ( F ` ( B \ A ) ) e. _om ) |
|
| 10 | 2 8 9 | sylancr | |- ( ( B e. ( ~P _om i^i Fin ) /\ A C_ B ) -> ( F ` ( B \ A ) ) e. _om ) |
| 11 | nnaword1 | |- ( ( ( F ` A ) e. _om /\ ( F ` ( B \ A ) ) e. _om ) -> ( F ` A ) C_ ( ( F ` A ) +o ( F ` ( B \ A ) ) ) ) |
|
| 12 | 5 10 11 | syl2anc | |- ( ( B e. ( ~P _om i^i Fin ) /\ A C_ B ) -> ( F ` A ) C_ ( ( F ` A ) +o ( F ` ( B \ A ) ) ) ) |
| 13 | disjdif | |- ( A i^i ( B \ A ) ) = (/) |
|
| 14 | 13 | a1i | |- ( ( B e. ( ~P _om i^i Fin ) /\ A C_ B ) -> ( A i^i ( B \ A ) ) = (/) ) |
| 15 | 1 | ackbij1lem9 | |- ( ( A e. ( ~P _om i^i Fin ) /\ ( B \ A ) e. ( ~P _om i^i Fin ) /\ ( A i^i ( B \ A ) ) = (/) ) -> ( F ` ( A u. ( B \ A ) ) ) = ( ( F ` A ) +o ( F ` ( B \ A ) ) ) ) |
| 16 | 3 8 14 15 | syl3anc | |- ( ( B e. ( ~P _om i^i Fin ) /\ A C_ B ) -> ( F ` ( A u. ( B \ A ) ) ) = ( ( F ` A ) +o ( F ` ( B \ A ) ) ) ) |
| 17 | undif | |- ( A C_ B <-> ( A u. ( B \ A ) ) = B ) |
|
| 18 | 17 | biimpi | |- ( A C_ B -> ( A u. ( B \ A ) ) = B ) |
| 19 | 18 | adantl | |- ( ( B e. ( ~P _om i^i Fin ) /\ A C_ B ) -> ( A u. ( B \ A ) ) = B ) |
| 20 | 19 | fveq2d | |- ( ( B e. ( ~P _om i^i Fin ) /\ A C_ B ) -> ( F ` ( A u. ( B \ A ) ) ) = ( F ` B ) ) |
| 21 | 16 20 | eqtr3d | |- ( ( B e. ( ~P _om i^i Fin ) /\ A C_ B ) -> ( ( F ` A ) +o ( F ` ( B \ A ) ) ) = ( F ` B ) ) |
| 22 | 12 21 | sseqtrd | |- ( ( B e. ( ~P _om i^i Fin ) /\ A C_ B ) -> ( F ` A ) C_ ( F ` B ) ) |