This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for wlkp1 . (Contributed by AV, 6-Mar-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | wlkp1.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| wlkp1.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | ||
| wlkp1.f | ⊢ ( 𝜑 → Fun 𝐼 ) | ||
| wlkp1.a | ⊢ ( 𝜑 → 𝐼 ∈ Fin ) | ||
| wlkp1.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) | ||
| wlkp1.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) | ||
| wlkp1.d | ⊢ ( 𝜑 → ¬ 𝐵 ∈ dom 𝐼 ) | ||
| wlkp1.w | ⊢ ( 𝜑 → 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) | ||
| wlkp1.n | ⊢ 𝑁 = ( ♯ ‘ 𝐹 ) | ||
| Assertion | wlkp1lem1 | ⊢ ( 𝜑 → ¬ ( 𝑁 + 1 ) ∈ dom 𝑃 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wlkp1.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | wlkp1.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| 3 | wlkp1.f | ⊢ ( 𝜑 → Fun 𝐼 ) | |
| 4 | wlkp1.a | ⊢ ( 𝜑 → 𝐼 ∈ Fin ) | |
| 5 | wlkp1.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) | |
| 6 | wlkp1.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) | |
| 7 | wlkp1.d | ⊢ ( 𝜑 → ¬ 𝐵 ∈ dom 𝐼 ) | |
| 8 | wlkp1.w | ⊢ ( 𝜑 → 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) | |
| 9 | wlkp1.n | ⊢ 𝑁 = ( ♯ ‘ 𝐹 ) | |
| 10 | wlkcl | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) | |
| 11 | 1 | wlkp | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) |
| 12 | 10 11 | jca | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) ) |
| 13 | fzp1nel | ⊢ ¬ ( ( ♯ ‘ 𝐹 ) + 1 ) ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) | |
| 14 | 13 | a1i | ⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → ¬ ( ( ♯ ‘ 𝐹 ) + 1 ) ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) |
| 15 | 9 | oveq1i | ⊢ ( 𝑁 + 1 ) = ( ( ♯ ‘ 𝐹 ) + 1 ) |
| 16 | 15 | eleq1i | ⊢ ( ( 𝑁 + 1 ) ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ↔ ( ( ♯ ‘ 𝐹 ) + 1 ) ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) |
| 17 | 14 16 | sylnibr | ⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → ¬ ( 𝑁 + 1 ) ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) |
| 18 | eleq2 | ⊢ ( dom 𝑃 = ( 0 ... ( ♯ ‘ 𝐹 ) ) → ( ( 𝑁 + 1 ) ∈ dom 𝑃 ↔ ( 𝑁 + 1 ) ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) ) | |
| 19 | 18 | notbid | ⊢ ( dom 𝑃 = ( 0 ... ( ♯ ‘ 𝐹 ) ) → ( ¬ ( 𝑁 + 1 ) ∈ dom 𝑃 ↔ ¬ ( 𝑁 + 1 ) ∈ ( 0 ... ( ♯ ‘ 𝐹 ) ) ) ) |
| 20 | 17 19 | syl5ibrcom | ⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → ( dom 𝑃 = ( 0 ... ( ♯ ‘ 𝐹 ) ) → ¬ ( 𝑁 + 1 ) ∈ dom 𝑃 ) ) |
| 21 | fdm | ⊢ ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 → dom 𝑃 = ( 0 ... ( ♯ ‘ 𝐹 ) ) ) | |
| 22 | 20 21 | impel | ⊢ ( ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) → ¬ ( 𝑁 + 1 ) ∈ dom 𝑃 ) |
| 23 | 8 12 22 | 3syl | ⊢ ( 𝜑 → ¬ ( 𝑁 + 1 ) ∈ dom 𝑃 ) |