This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for wlkp1 . (Contributed by AV, 6-Mar-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | wlkp1.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| wlkp1.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | ||
| wlkp1.f | ⊢ ( 𝜑 → Fun 𝐼 ) | ||
| wlkp1.a | ⊢ ( 𝜑 → 𝐼 ∈ Fin ) | ||
| wlkp1.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) | ||
| wlkp1.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) | ||
| wlkp1.d | ⊢ ( 𝜑 → ¬ 𝐵 ∈ dom 𝐼 ) | ||
| wlkp1.w | ⊢ ( 𝜑 → 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) | ||
| wlkp1.n | ⊢ 𝑁 = ( ♯ ‘ 𝐹 ) | ||
| wlkp1.e | ⊢ ( 𝜑 → 𝐸 ∈ ( Edg ‘ 𝐺 ) ) | ||
| wlkp1.x | ⊢ ( 𝜑 → { ( 𝑃 ‘ 𝑁 ) , 𝐶 } ⊆ 𝐸 ) | ||
| wlkp1.u | ⊢ ( 𝜑 → ( iEdg ‘ 𝑆 ) = ( 𝐼 ∪ { 〈 𝐵 , 𝐸 〉 } ) ) | ||
| wlkp1.h | ⊢ 𝐻 = ( 𝐹 ∪ { 〈 𝑁 , 𝐵 〉 } ) | ||
| wlkp1.q | ⊢ 𝑄 = ( 𝑃 ∪ { 〈 ( 𝑁 + 1 ) , 𝐶 〉 } ) | ||
| wlkp1.s | ⊢ ( 𝜑 → ( Vtx ‘ 𝑆 ) = 𝑉 ) | ||
| Assertion | wlkp1lem7 | ⊢ ( 𝜑 → { ( 𝑄 ‘ 𝑁 ) , ( 𝑄 ‘ ( 𝑁 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑁 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wlkp1.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | wlkp1.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| 3 | wlkp1.f | ⊢ ( 𝜑 → Fun 𝐼 ) | |
| 4 | wlkp1.a | ⊢ ( 𝜑 → 𝐼 ∈ Fin ) | |
| 5 | wlkp1.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) | |
| 6 | wlkp1.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) | |
| 7 | wlkp1.d | ⊢ ( 𝜑 → ¬ 𝐵 ∈ dom 𝐼 ) | |
| 8 | wlkp1.w | ⊢ ( 𝜑 → 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) | |
| 9 | wlkp1.n | ⊢ 𝑁 = ( ♯ ‘ 𝐹 ) | |
| 10 | wlkp1.e | ⊢ ( 𝜑 → 𝐸 ∈ ( Edg ‘ 𝐺 ) ) | |
| 11 | wlkp1.x | ⊢ ( 𝜑 → { ( 𝑃 ‘ 𝑁 ) , 𝐶 } ⊆ 𝐸 ) | |
| 12 | wlkp1.u | ⊢ ( 𝜑 → ( iEdg ‘ 𝑆 ) = ( 𝐼 ∪ { 〈 𝐵 , 𝐸 〉 } ) ) | |
| 13 | wlkp1.h | ⊢ 𝐻 = ( 𝐹 ∪ { 〈 𝑁 , 𝐵 〉 } ) | |
| 14 | wlkp1.q | ⊢ 𝑄 = ( 𝑃 ∪ { 〈 ( 𝑁 + 1 ) , 𝐶 〉 } ) | |
| 15 | wlkp1.s | ⊢ ( 𝜑 → ( Vtx ‘ 𝑆 ) = 𝑉 ) | |
| 16 | fveq2 | ⊢ ( 𝑘 = 𝑁 → ( 𝑄 ‘ 𝑘 ) = ( 𝑄 ‘ 𝑁 ) ) | |
| 17 | fveq2 | ⊢ ( 𝑘 = 𝑁 → ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ 𝑁 ) ) | |
| 18 | 16 17 | eqeq12d | ⊢ ( 𝑘 = 𝑁 → ( ( 𝑄 ‘ 𝑘 ) = ( 𝑃 ‘ 𝑘 ) ↔ ( 𝑄 ‘ 𝑁 ) = ( 𝑃 ‘ 𝑁 ) ) ) |
| 19 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | wlkp1lem5 | ⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 0 ... 𝑁 ) ( 𝑄 ‘ 𝑘 ) = ( 𝑃 ‘ 𝑘 ) ) |
| 20 | wlkcl | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) | |
| 21 | 9 | eqcomi | ⊢ ( ♯ ‘ 𝐹 ) = 𝑁 |
| 22 | 21 | eleq1i | ⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ↔ 𝑁 ∈ ℕ0 ) |
| 23 | nn0fz0 | ⊢ ( 𝑁 ∈ ℕ0 ↔ 𝑁 ∈ ( 0 ... 𝑁 ) ) | |
| 24 | 22 23 | sylbb | ⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → 𝑁 ∈ ( 0 ... 𝑁 ) ) |
| 25 | 8 20 24 | 3syl | ⊢ ( 𝜑 → 𝑁 ∈ ( 0 ... 𝑁 ) ) |
| 26 | 18 19 25 | rspcdva | ⊢ ( 𝜑 → ( 𝑄 ‘ 𝑁 ) = ( 𝑃 ‘ 𝑁 ) ) |
| 27 | 14 | fveq1i | ⊢ ( 𝑄 ‘ ( 𝑁 + 1 ) ) = ( ( 𝑃 ∪ { 〈 ( 𝑁 + 1 ) , 𝐶 〉 } ) ‘ ( 𝑁 + 1 ) ) |
| 28 | ovex | ⊢ ( 𝑁 + 1 ) ∈ V | |
| 29 | 1 2 3 4 5 6 7 8 9 | wlkp1lem1 | ⊢ ( 𝜑 → ¬ ( 𝑁 + 1 ) ∈ dom 𝑃 ) |
| 30 | fsnunfv | ⊢ ( ( ( 𝑁 + 1 ) ∈ V ∧ 𝐶 ∈ 𝑉 ∧ ¬ ( 𝑁 + 1 ) ∈ dom 𝑃 ) → ( ( 𝑃 ∪ { 〈 ( 𝑁 + 1 ) , 𝐶 〉 } ) ‘ ( 𝑁 + 1 ) ) = 𝐶 ) | |
| 31 | 28 6 29 30 | mp3an2i | ⊢ ( 𝜑 → ( ( 𝑃 ∪ { 〈 ( 𝑁 + 1 ) , 𝐶 〉 } ) ‘ ( 𝑁 + 1 ) ) = 𝐶 ) |
| 32 | 27 31 | eqtrid | ⊢ ( 𝜑 → ( 𝑄 ‘ ( 𝑁 + 1 ) ) = 𝐶 ) |
| 33 | 26 32 | preq12d | ⊢ ( 𝜑 → { ( 𝑄 ‘ 𝑁 ) , ( 𝑄 ‘ ( 𝑁 + 1 ) ) } = { ( 𝑃 ‘ 𝑁 ) , 𝐶 } ) |
| 34 | fsnunfv | ⊢ ( ( 𝐵 ∈ 𝑊 ∧ 𝐸 ∈ ( Edg ‘ 𝐺 ) ∧ ¬ 𝐵 ∈ dom 𝐼 ) → ( ( 𝐼 ∪ { 〈 𝐵 , 𝐸 〉 } ) ‘ 𝐵 ) = 𝐸 ) | |
| 35 | 5 10 7 34 | syl3anc | ⊢ ( 𝜑 → ( ( 𝐼 ∪ { 〈 𝐵 , 𝐸 〉 } ) ‘ 𝐵 ) = 𝐸 ) |
| 36 | 11 33 35 | 3sstr4d | ⊢ ( 𝜑 → { ( 𝑄 ‘ 𝑁 ) , ( 𝑄 ‘ ( 𝑁 + 1 ) ) } ⊆ ( ( 𝐼 ∪ { 〈 𝐵 , 𝐸 〉 } ) ‘ 𝐵 ) ) |
| 37 | 1 2 3 4 5 6 7 8 9 10 11 12 13 | wlkp1lem3 | ⊢ ( 𝜑 → ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑁 ) ) = ( ( 𝐼 ∪ { 〈 𝐵 , 𝐸 〉 } ) ‘ 𝐵 ) ) |
| 38 | 36 37 | sseqtrrd | ⊢ ( 𝜑 → { ( 𝑄 ‘ 𝑁 ) , ( 𝑄 ‘ ( 𝑁 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑁 ) ) ) |