This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for wlkp1 . (Contributed by AV, 6-Mar-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | wlkp1.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| wlkp1.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | ||
| wlkp1.f | ⊢ ( 𝜑 → Fun 𝐼 ) | ||
| wlkp1.a | ⊢ ( 𝜑 → 𝐼 ∈ Fin ) | ||
| wlkp1.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) | ||
| wlkp1.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) | ||
| wlkp1.d | ⊢ ( 𝜑 → ¬ 𝐵 ∈ dom 𝐼 ) | ||
| wlkp1.w | ⊢ ( 𝜑 → 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) | ||
| wlkp1.n | ⊢ 𝑁 = ( ♯ ‘ 𝐹 ) | ||
| wlkp1.e | ⊢ ( 𝜑 → 𝐸 ∈ ( Edg ‘ 𝐺 ) ) | ||
| wlkp1.x | ⊢ ( 𝜑 → { ( 𝑃 ‘ 𝑁 ) , 𝐶 } ⊆ 𝐸 ) | ||
| wlkp1.u | ⊢ ( 𝜑 → ( iEdg ‘ 𝑆 ) = ( 𝐼 ∪ { 〈 𝐵 , 𝐸 〉 } ) ) | ||
| wlkp1.h | ⊢ 𝐻 = ( 𝐹 ∪ { 〈 𝑁 , 𝐵 〉 } ) | ||
| Assertion | wlkp1lem3 | ⊢ ( 𝜑 → ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑁 ) ) = ( ( 𝐼 ∪ { 〈 𝐵 , 𝐸 〉 } ) ‘ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wlkp1.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | wlkp1.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| 3 | wlkp1.f | ⊢ ( 𝜑 → Fun 𝐼 ) | |
| 4 | wlkp1.a | ⊢ ( 𝜑 → 𝐼 ∈ Fin ) | |
| 5 | wlkp1.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) | |
| 6 | wlkp1.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) | |
| 7 | wlkp1.d | ⊢ ( 𝜑 → ¬ 𝐵 ∈ dom 𝐼 ) | |
| 8 | wlkp1.w | ⊢ ( 𝜑 → 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) | |
| 9 | wlkp1.n | ⊢ 𝑁 = ( ♯ ‘ 𝐹 ) | |
| 10 | wlkp1.e | ⊢ ( 𝜑 → 𝐸 ∈ ( Edg ‘ 𝐺 ) ) | |
| 11 | wlkp1.x | ⊢ ( 𝜑 → { ( 𝑃 ‘ 𝑁 ) , 𝐶 } ⊆ 𝐸 ) | |
| 12 | wlkp1.u | ⊢ ( 𝜑 → ( iEdg ‘ 𝑆 ) = ( 𝐼 ∪ { 〈 𝐵 , 𝐸 〉 } ) ) | |
| 13 | wlkp1.h | ⊢ 𝐻 = ( 𝐹 ∪ { 〈 𝑁 , 𝐵 〉 } ) | |
| 14 | 13 | a1i | ⊢ ( 𝜑 → 𝐻 = ( 𝐹 ∪ { 〈 𝑁 , 𝐵 〉 } ) ) |
| 15 | 14 | fveq1d | ⊢ ( 𝜑 → ( 𝐻 ‘ 𝑁 ) = ( ( 𝐹 ∪ { 〈 𝑁 , 𝐵 〉 } ) ‘ 𝑁 ) ) |
| 16 | 9 | fvexi | ⊢ 𝑁 ∈ V |
| 17 | 2 | wlkf | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → 𝐹 ∈ Word dom 𝐼 ) |
| 18 | lencl | ⊢ ( 𝐹 ∈ Word dom 𝐼 → ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) | |
| 19 | wrddm | ⊢ ( 𝐹 ∈ Word dom 𝐼 → dom 𝐹 = ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) | |
| 20 | fzonel | ⊢ ¬ ( ♯ ‘ 𝐹 ) ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) | |
| 21 | 9 | a1i | ⊢ ( ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ dom 𝐹 = ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → 𝑁 = ( ♯ ‘ 𝐹 ) ) |
| 22 | simpr | ⊢ ( ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ dom 𝐹 = ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → dom 𝐹 = ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) | |
| 23 | 21 22 | eleq12d | ⊢ ( ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ dom 𝐹 = ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( 𝑁 ∈ dom 𝐹 ↔ ( ♯ ‘ 𝐹 ) ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) |
| 24 | 20 23 | mtbiri | ⊢ ( ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ dom 𝐹 = ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ¬ 𝑁 ∈ dom 𝐹 ) |
| 25 | 18 19 24 | syl2anc | ⊢ ( 𝐹 ∈ Word dom 𝐼 → ¬ 𝑁 ∈ dom 𝐹 ) |
| 26 | 8 17 25 | 3syl | ⊢ ( 𝜑 → ¬ 𝑁 ∈ dom 𝐹 ) |
| 27 | fsnunfv | ⊢ ( ( 𝑁 ∈ V ∧ 𝐵 ∈ 𝑊 ∧ ¬ 𝑁 ∈ dom 𝐹 ) → ( ( 𝐹 ∪ { 〈 𝑁 , 𝐵 〉 } ) ‘ 𝑁 ) = 𝐵 ) | |
| 28 | 16 5 26 27 | mp3an2i | ⊢ ( 𝜑 → ( ( 𝐹 ∪ { 〈 𝑁 , 𝐵 〉 } ) ‘ 𝑁 ) = 𝐵 ) |
| 29 | 15 28 | eqtrd | ⊢ ( 𝜑 → ( 𝐻 ‘ 𝑁 ) = 𝐵 ) |
| 30 | 12 29 | fveq12d | ⊢ ( 𝜑 → ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑁 ) ) = ( ( 𝐼 ∪ { 〈 𝐵 , 𝐸 〉 } ) ‘ 𝐵 ) ) |