This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for wlkp1 . (Contributed by AV, 6-Mar-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | wlkp1.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| wlkp1.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | ||
| wlkp1.f | ⊢ ( 𝜑 → Fun 𝐼 ) | ||
| wlkp1.a | ⊢ ( 𝜑 → 𝐼 ∈ Fin ) | ||
| wlkp1.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) | ||
| wlkp1.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) | ||
| wlkp1.d | ⊢ ( 𝜑 → ¬ 𝐵 ∈ dom 𝐼 ) | ||
| wlkp1.w | ⊢ ( 𝜑 → 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) | ||
| wlkp1.n | ⊢ 𝑁 = ( ♯ ‘ 𝐹 ) | ||
| wlkp1.e | ⊢ ( 𝜑 → 𝐸 ∈ ( Edg ‘ 𝐺 ) ) | ||
| wlkp1.x | ⊢ ( 𝜑 → { ( 𝑃 ‘ 𝑁 ) , 𝐶 } ⊆ 𝐸 ) | ||
| wlkp1.u | ⊢ ( 𝜑 → ( iEdg ‘ 𝑆 ) = ( 𝐼 ∪ { 〈 𝐵 , 𝐸 〉 } ) ) | ||
| wlkp1.h | ⊢ 𝐻 = ( 𝐹 ∪ { 〈 𝑁 , 𝐵 〉 } ) | ||
| wlkp1.q | ⊢ 𝑄 = ( 𝑃 ∪ { 〈 ( 𝑁 + 1 ) , 𝐶 〉 } ) | ||
| wlkp1.s | ⊢ ( 𝜑 → ( Vtx ‘ 𝑆 ) = 𝑉 ) | ||
| Assertion | wlkp1lem6 | ⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 0 ..^ 𝑁 ) ( ( 𝑄 ‘ 𝑘 ) = ( 𝑃 ‘ 𝑘 ) ∧ ( 𝑄 ‘ ( 𝑘 + 1 ) ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) ∧ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑘 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wlkp1.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | wlkp1.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| 3 | wlkp1.f | ⊢ ( 𝜑 → Fun 𝐼 ) | |
| 4 | wlkp1.a | ⊢ ( 𝜑 → 𝐼 ∈ Fin ) | |
| 5 | wlkp1.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) | |
| 6 | wlkp1.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) | |
| 7 | wlkp1.d | ⊢ ( 𝜑 → ¬ 𝐵 ∈ dom 𝐼 ) | |
| 8 | wlkp1.w | ⊢ ( 𝜑 → 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) | |
| 9 | wlkp1.n | ⊢ 𝑁 = ( ♯ ‘ 𝐹 ) | |
| 10 | wlkp1.e | ⊢ ( 𝜑 → 𝐸 ∈ ( Edg ‘ 𝐺 ) ) | |
| 11 | wlkp1.x | ⊢ ( 𝜑 → { ( 𝑃 ‘ 𝑁 ) , 𝐶 } ⊆ 𝐸 ) | |
| 12 | wlkp1.u | ⊢ ( 𝜑 → ( iEdg ‘ 𝑆 ) = ( 𝐼 ∪ { 〈 𝐵 , 𝐸 〉 } ) ) | |
| 13 | wlkp1.h | ⊢ 𝐻 = ( 𝐹 ∪ { 〈 𝑁 , 𝐵 〉 } ) | |
| 14 | wlkp1.q | ⊢ 𝑄 = ( 𝑃 ∪ { 〈 ( 𝑁 + 1 ) , 𝐶 〉 } ) | |
| 15 | wlkp1.s | ⊢ ( 𝜑 → ( Vtx ‘ 𝑆 ) = 𝑉 ) | |
| 16 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | wlkp1lem5 | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ( 0 ... 𝑁 ) ( 𝑄 ‘ 𝑥 ) = ( 𝑃 ‘ 𝑥 ) ) |
| 17 | elfzofz | ⊢ ( 𝑘 ∈ ( 0 ..^ 𝑁 ) → 𝑘 ∈ ( 0 ... 𝑁 ) ) | |
| 18 | 17 | adantl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑁 ) ) → 𝑘 ∈ ( 0 ... 𝑁 ) ) |
| 19 | fveq2 | ⊢ ( 𝑥 = 𝑘 → ( 𝑄 ‘ 𝑥 ) = ( 𝑄 ‘ 𝑘 ) ) | |
| 20 | fveq2 | ⊢ ( 𝑥 = 𝑘 → ( 𝑃 ‘ 𝑥 ) = ( 𝑃 ‘ 𝑘 ) ) | |
| 21 | 19 20 | eqeq12d | ⊢ ( 𝑥 = 𝑘 → ( ( 𝑄 ‘ 𝑥 ) = ( 𝑃 ‘ 𝑥 ) ↔ ( 𝑄 ‘ 𝑘 ) = ( 𝑃 ‘ 𝑘 ) ) ) |
| 22 | 21 | rspcv | ⊢ ( 𝑘 ∈ ( 0 ... 𝑁 ) → ( ∀ 𝑥 ∈ ( 0 ... 𝑁 ) ( 𝑄 ‘ 𝑥 ) = ( 𝑃 ‘ 𝑥 ) → ( 𝑄 ‘ 𝑘 ) = ( 𝑃 ‘ 𝑘 ) ) ) |
| 23 | 18 22 | syl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑁 ) ) → ( ∀ 𝑥 ∈ ( 0 ... 𝑁 ) ( 𝑄 ‘ 𝑥 ) = ( 𝑃 ‘ 𝑥 ) → ( 𝑄 ‘ 𝑘 ) = ( 𝑃 ‘ 𝑘 ) ) ) |
| 24 | 23 | imp | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑁 ) ) ∧ ∀ 𝑥 ∈ ( 0 ... 𝑁 ) ( 𝑄 ‘ 𝑥 ) = ( 𝑃 ‘ 𝑥 ) ) → ( 𝑄 ‘ 𝑘 ) = ( 𝑃 ‘ 𝑘 ) ) |
| 25 | fzofzp1 | ⊢ ( 𝑘 ∈ ( 0 ..^ 𝑁 ) → ( 𝑘 + 1 ) ∈ ( 0 ... 𝑁 ) ) | |
| 26 | 25 | adantl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝑘 + 1 ) ∈ ( 0 ... 𝑁 ) ) |
| 27 | fveq2 | ⊢ ( 𝑥 = ( 𝑘 + 1 ) → ( 𝑄 ‘ 𝑥 ) = ( 𝑄 ‘ ( 𝑘 + 1 ) ) ) | |
| 28 | fveq2 | ⊢ ( 𝑥 = ( 𝑘 + 1 ) → ( 𝑃 ‘ 𝑥 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) ) | |
| 29 | 27 28 | eqeq12d | ⊢ ( 𝑥 = ( 𝑘 + 1 ) → ( ( 𝑄 ‘ 𝑥 ) = ( 𝑃 ‘ 𝑥 ) ↔ ( 𝑄 ‘ ( 𝑘 + 1 ) ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) ) ) |
| 30 | 29 | rspcv | ⊢ ( ( 𝑘 + 1 ) ∈ ( 0 ... 𝑁 ) → ( ∀ 𝑥 ∈ ( 0 ... 𝑁 ) ( 𝑄 ‘ 𝑥 ) = ( 𝑃 ‘ 𝑥 ) → ( 𝑄 ‘ ( 𝑘 + 1 ) ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) ) ) |
| 31 | 26 30 | syl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑁 ) ) → ( ∀ 𝑥 ∈ ( 0 ... 𝑁 ) ( 𝑄 ‘ 𝑥 ) = ( 𝑃 ‘ 𝑥 ) → ( 𝑄 ‘ ( 𝑘 + 1 ) ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) ) ) |
| 32 | 31 | imp | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑁 ) ) ∧ ∀ 𝑥 ∈ ( 0 ... 𝑁 ) ( 𝑄 ‘ 𝑥 ) = ( 𝑃 ‘ 𝑥 ) ) → ( 𝑄 ‘ ( 𝑘 + 1 ) ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) ) |
| 33 | 12 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑁 ) ) → ( iEdg ‘ 𝑆 ) = ( 𝐼 ∪ { 〈 𝐵 , 𝐸 〉 } ) ) |
| 34 | 13 | fveq1i | ⊢ ( 𝐻 ‘ 𝑘 ) = ( ( 𝐹 ∪ { 〈 𝑁 , 𝐵 〉 } ) ‘ 𝑘 ) |
| 35 | fzonel | ⊢ ¬ 𝑁 ∈ ( 0 ..^ 𝑁 ) | |
| 36 | eleq1 | ⊢ ( 𝑁 = 𝑘 → ( 𝑁 ∈ ( 0 ..^ 𝑁 ) ↔ 𝑘 ∈ ( 0 ..^ 𝑁 ) ) ) | |
| 37 | 35 36 | mtbii | ⊢ ( 𝑁 = 𝑘 → ¬ 𝑘 ∈ ( 0 ..^ 𝑁 ) ) |
| 38 | 37 | a1i | ⊢ ( 𝜑 → ( 𝑁 = 𝑘 → ¬ 𝑘 ∈ ( 0 ..^ 𝑁 ) ) ) |
| 39 | 38 | con2d | ⊢ ( 𝜑 → ( 𝑘 ∈ ( 0 ..^ 𝑁 ) → ¬ 𝑁 = 𝑘 ) ) |
| 40 | 39 | imp | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑁 ) ) → ¬ 𝑁 = 𝑘 ) |
| 41 | 40 | neqned | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑁 ) ) → 𝑁 ≠ 𝑘 ) |
| 42 | fvunsn | ⊢ ( 𝑁 ≠ 𝑘 → ( ( 𝐹 ∪ { 〈 𝑁 , 𝐵 〉 } ) ‘ 𝑘 ) = ( 𝐹 ‘ 𝑘 ) ) | |
| 43 | 41 42 | syl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝐹 ∪ { 〈 𝑁 , 𝐵 〉 } ) ‘ 𝑘 ) = ( 𝐹 ‘ 𝑘 ) ) |
| 44 | 34 43 | eqtrid | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝐻 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑘 ) ) |
| 45 | 33 44 | fveq12d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑁 ) ) → ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑘 ) ) = ( ( 𝐼 ∪ { 〈 𝐵 , 𝐸 〉 } ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) |
| 46 | 9 | oveq2i | ⊢ ( 0 ..^ 𝑁 ) = ( 0 ..^ ( ♯ ‘ 𝐹 ) ) |
| 47 | 46 | eleq2i | ⊢ ( 𝑘 ∈ ( 0 ..^ 𝑁 ) ↔ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
| 48 | 2 | wlkf | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → 𝐹 ∈ Word dom 𝐼 ) |
| 49 | 8 48 | syl | ⊢ ( 𝜑 → 𝐹 ∈ Word dom 𝐼 ) |
| 50 | wrdsymbcl | ⊢ ( ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( 𝐹 ‘ 𝑘 ) ∈ dom 𝐼 ) | |
| 51 | 50 | ex | ⊢ ( 𝐹 ∈ Word dom 𝐼 → ( 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ dom 𝐼 ) ) |
| 52 | 49 51 | syl | ⊢ ( 𝜑 → ( 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ dom 𝐼 ) ) |
| 53 | 47 52 | biimtrid | ⊢ ( 𝜑 → ( 𝑘 ∈ ( 0 ..^ 𝑁 ) → ( 𝐹 ‘ 𝑘 ) ∈ dom 𝐼 ) ) |
| 54 | 53 | imp | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ dom 𝐼 ) |
| 55 | eleq1 | ⊢ ( 𝐵 = ( 𝐹 ‘ 𝑘 ) → ( 𝐵 ∈ dom 𝐼 ↔ ( 𝐹 ‘ 𝑘 ) ∈ dom 𝐼 ) ) | |
| 56 | 54 55 | syl5ibrcom | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝐵 = ( 𝐹 ‘ 𝑘 ) → 𝐵 ∈ dom 𝐼 ) ) |
| 57 | 56 | con3d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑁 ) ) → ( ¬ 𝐵 ∈ dom 𝐼 → ¬ 𝐵 = ( 𝐹 ‘ 𝑘 ) ) ) |
| 58 | 57 | ex | ⊢ ( 𝜑 → ( 𝑘 ∈ ( 0 ..^ 𝑁 ) → ( ¬ 𝐵 ∈ dom 𝐼 → ¬ 𝐵 = ( 𝐹 ‘ 𝑘 ) ) ) ) |
| 59 | 7 58 | mpid | ⊢ ( 𝜑 → ( 𝑘 ∈ ( 0 ..^ 𝑁 ) → ¬ 𝐵 = ( 𝐹 ‘ 𝑘 ) ) ) |
| 60 | 59 | imp | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑁 ) ) → ¬ 𝐵 = ( 𝐹 ‘ 𝑘 ) ) |
| 61 | 60 | neqned | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑁 ) ) → 𝐵 ≠ ( 𝐹 ‘ 𝑘 ) ) |
| 62 | fvunsn | ⊢ ( 𝐵 ≠ ( 𝐹 ‘ 𝑘 ) → ( ( 𝐼 ∪ { 〈 𝐵 , 𝐸 〉 } ) ‘ ( 𝐹 ‘ 𝑘 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) | |
| 63 | 61 62 | syl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝐼 ∪ { 〈 𝐵 , 𝐸 〉 } ) ‘ ( 𝐹 ‘ 𝑘 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) |
| 64 | 45 63 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑁 ) ) → ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑘 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) |
| 65 | 64 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑁 ) ) ∧ ∀ 𝑥 ∈ ( 0 ... 𝑁 ) ( 𝑄 ‘ 𝑥 ) = ( 𝑃 ‘ 𝑥 ) ) → ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑘 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) |
| 66 | 24 32 65 | 3jca | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑁 ) ) ∧ ∀ 𝑥 ∈ ( 0 ... 𝑁 ) ( 𝑄 ‘ 𝑥 ) = ( 𝑃 ‘ 𝑥 ) ) → ( ( 𝑄 ‘ 𝑘 ) = ( 𝑃 ‘ 𝑘 ) ∧ ( 𝑄 ‘ ( 𝑘 + 1 ) ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) ∧ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑘 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) |
| 67 | 16 66 | mpidan | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝑄 ‘ 𝑘 ) = ( 𝑃 ‘ 𝑘 ) ∧ ( 𝑄 ‘ ( 𝑘 + 1 ) ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) ∧ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑘 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) |
| 68 | 67 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 0 ..^ 𝑁 ) ( ( 𝑄 ‘ 𝑘 ) = ( 𝑃 ‘ 𝑘 ) ∧ ( 𝑄 ‘ ( 𝑘 + 1 ) ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) ∧ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑘 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) |