This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Append one path segment (edge) E from vertex ( PN ) to a vertex C to a walk <. F , P >. to become a walk <. H , Q >. of the supergraph S obtained by adding the new edge to the graph G . Formerly proven directly for Eulerian paths (for pseudographs), see eupthp1 . (Contributed by Mario Carneiro, 7-Apr-2015) (Revised by AV, 6-Mar-2021) (Proof shortened by AV, 18-Apr-2021) (Revised by AV, 8-Apr-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | wlkp1.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| wlkp1.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | ||
| wlkp1.f | ⊢ ( 𝜑 → Fun 𝐼 ) | ||
| wlkp1.a | ⊢ ( 𝜑 → 𝐼 ∈ Fin ) | ||
| wlkp1.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) | ||
| wlkp1.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) | ||
| wlkp1.d | ⊢ ( 𝜑 → ¬ 𝐵 ∈ dom 𝐼 ) | ||
| wlkp1.w | ⊢ ( 𝜑 → 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) | ||
| wlkp1.n | ⊢ 𝑁 = ( ♯ ‘ 𝐹 ) | ||
| wlkp1.e | ⊢ ( 𝜑 → 𝐸 ∈ ( Edg ‘ 𝐺 ) ) | ||
| wlkp1.x | ⊢ ( 𝜑 → { ( 𝑃 ‘ 𝑁 ) , 𝐶 } ⊆ 𝐸 ) | ||
| wlkp1.u | ⊢ ( 𝜑 → ( iEdg ‘ 𝑆 ) = ( 𝐼 ∪ { 〈 𝐵 , 𝐸 〉 } ) ) | ||
| wlkp1.h | ⊢ 𝐻 = ( 𝐹 ∪ { 〈 𝑁 , 𝐵 〉 } ) | ||
| wlkp1.q | ⊢ 𝑄 = ( 𝑃 ∪ { 〈 ( 𝑁 + 1 ) , 𝐶 〉 } ) | ||
| wlkp1.s | ⊢ ( 𝜑 → ( Vtx ‘ 𝑆 ) = 𝑉 ) | ||
| wlkp1.l | ⊢ ( ( 𝜑 ∧ 𝐶 = ( 𝑃 ‘ 𝑁 ) ) → 𝐸 = { 𝐶 } ) | ||
| Assertion | wlkp1 | ⊢ ( 𝜑 → 𝐻 ( Walks ‘ 𝑆 ) 𝑄 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wlkp1.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | wlkp1.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| 3 | wlkp1.f | ⊢ ( 𝜑 → Fun 𝐼 ) | |
| 4 | wlkp1.a | ⊢ ( 𝜑 → 𝐼 ∈ Fin ) | |
| 5 | wlkp1.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) | |
| 6 | wlkp1.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) | |
| 7 | wlkp1.d | ⊢ ( 𝜑 → ¬ 𝐵 ∈ dom 𝐼 ) | |
| 8 | wlkp1.w | ⊢ ( 𝜑 → 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) | |
| 9 | wlkp1.n | ⊢ 𝑁 = ( ♯ ‘ 𝐹 ) | |
| 10 | wlkp1.e | ⊢ ( 𝜑 → 𝐸 ∈ ( Edg ‘ 𝐺 ) ) | |
| 11 | wlkp1.x | ⊢ ( 𝜑 → { ( 𝑃 ‘ 𝑁 ) , 𝐶 } ⊆ 𝐸 ) | |
| 12 | wlkp1.u | ⊢ ( 𝜑 → ( iEdg ‘ 𝑆 ) = ( 𝐼 ∪ { 〈 𝐵 , 𝐸 〉 } ) ) | |
| 13 | wlkp1.h | ⊢ 𝐻 = ( 𝐹 ∪ { 〈 𝑁 , 𝐵 〉 } ) | |
| 14 | wlkp1.q | ⊢ 𝑄 = ( 𝑃 ∪ { 〈 ( 𝑁 + 1 ) , 𝐶 〉 } ) | |
| 15 | wlkp1.s | ⊢ ( 𝜑 → ( Vtx ‘ 𝑆 ) = 𝑉 ) | |
| 16 | wlkp1.l | ⊢ ( ( 𝜑 ∧ 𝐶 = ( 𝑃 ‘ 𝑁 ) ) → 𝐸 = { 𝐶 } ) | |
| 17 | 2 | wlkf | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → 𝐹 ∈ Word dom 𝐼 ) |
| 18 | wrdf | ⊢ ( 𝐹 ∈ Word dom 𝐼 → 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ dom 𝐼 ) | |
| 19 | 9 | eqcomi | ⊢ ( ♯ ‘ 𝐹 ) = 𝑁 |
| 20 | 19 | oveq2i | ⊢ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) = ( 0 ..^ 𝑁 ) |
| 21 | 20 | feq2i | ⊢ ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ dom 𝐼 ↔ 𝐹 : ( 0 ..^ 𝑁 ) ⟶ dom 𝐼 ) |
| 22 | 18 21 | sylib | ⊢ ( 𝐹 ∈ Word dom 𝐼 → 𝐹 : ( 0 ..^ 𝑁 ) ⟶ dom 𝐼 ) |
| 23 | 8 17 22 | 3syl | ⊢ ( 𝜑 → 𝐹 : ( 0 ..^ 𝑁 ) ⟶ dom 𝐼 ) |
| 24 | 9 | fvexi | ⊢ 𝑁 ∈ V |
| 25 | 24 | a1i | ⊢ ( 𝜑 → 𝑁 ∈ V ) |
| 26 | snidg | ⊢ ( 𝐵 ∈ 𝑊 → 𝐵 ∈ { 𝐵 } ) | |
| 27 | 5 26 | syl | ⊢ ( 𝜑 → 𝐵 ∈ { 𝐵 } ) |
| 28 | dmsnopg | ⊢ ( 𝐸 ∈ ( Edg ‘ 𝐺 ) → dom { 〈 𝐵 , 𝐸 〉 } = { 𝐵 } ) | |
| 29 | 10 28 | syl | ⊢ ( 𝜑 → dom { 〈 𝐵 , 𝐸 〉 } = { 𝐵 } ) |
| 30 | 27 29 | eleqtrrd | ⊢ ( 𝜑 → 𝐵 ∈ dom { 〈 𝐵 , 𝐸 〉 } ) |
| 31 | 25 30 | fsnd | ⊢ ( 𝜑 → { 〈 𝑁 , 𝐵 〉 } : { 𝑁 } ⟶ dom { 〈 𝐵 , 𝐸 〉 } ) |
| 32 | fzodisjsn | ⊢ ( ( 0 ..^ 𝑁 ) ∩ { 𝑁 } ) = ∅ | |
| 33 | 32 | a1i | ⊢ ( 𝜑 → ( ( 0 ..^ 𝑁 ) ∩ { 𝑁 } ) = ∅ ) |
| 34 | fun | ⊢ ( ( ( 𝐹 : ( 0 ..^ 𝑁 ) ⟶ dom 𝐼 ∧ { 〈 𝑁 , 𝐵 〉 } : { 𝑁 } ⟶ dom { 〈 𝐵 , 𝐸 〉 } ) ∧ ( ( 0 ..^ 𝑁 ) ∩ { 𝑁 } ) = ∅ ) → ( 𝐹 ∪ { 〈 𝑁 , 𝐵 〉 } ) : ( ( 0 ..^ 𝑁 ) ∪ { 𝑁 } ) ⟶ ( dom 𝐼 ∪ dom { 〈 𝐵 , 𝐸 〉 } ) ) | |
| 35 | 23 31 33 34 | syl21anc | ⊢ ( 𝜑 → ( 𝐹 ∪ { 〈 𝑁 , 𝐵 〉 } ) : ( ( 0 ..^ 𝑁 ) ∪ { 𝑁 } ) ⟶ ( dom 𝐼 ∪ dom { 〈 𝐵 , 𝐸 〉 } ) ) |
| 36 | 13 | a1i | ⊢ ( 𝜑 → 𝐻 = ( 𝐹 ∪ { 〈 𝑁 , 𝐵 〉 } ) ) |
| 37 | 1 2 3 4 5 6 7 8 9 10 11 12 13 | wlkp1lem2 | ⊢ ( 𝜑 → ( ♯ ‘ 𝐻 ) = ( 𝑁 + 1 ) ) |
| 38 | 37 | oveq2d | ⊢ ( 𝜑 → ( 0 ..^ ( ♯ ‘ 𝐻 ) ) = ( 0 ..^ ( 𝑁 + 1 ) ) ) |
| 39 | wlkcl | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) | |
| 40 | eleq1 | ⊢ ( ( ♯ ‘ 𝐹 ) = 𝑁 → ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ↔ 𝑁 ∈ ℕ0 ) ) | |
| 41 | 40 | eqcoms | ⊢ ( 𝑁 = ( ♯ ‘ 𝐹 ) → ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ↔ 𝑁 ∈ ℕ0 ) ) |
| 42 | elnn0uz | ⊢ ( 𝑁 ∈ ℕ0 ↔ 𝑁 ∈ ( ℤ≥ ‘ 0 ) ) | |
| 43 | 42 | biimpi | ⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ( ℤ≥ ‘ 0 ) ) |
| 44 | 41 43 | biimtrdi | ⊢ ( 𝑁 = ( ♯ ‘ 𝐹 ) → ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → 𝑁 ∈ ( ℤ≥ ‘ 0 ) ) ) |
| 45 | 9 44 | ax-mp | ⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → 𝑁 ∈ ( ℤ≥ ‘ 0 ) ) |
| 46 | 8 39 45 | 3syl | ⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 0 ) ) |
| 47 | fzosplitsn | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 0 ) → ( 0 ..^ ( 𝑁 + 1 ) ) = ( ( 0 ..^ 𝑁 ) ∪ { 𝑁 } ) ) | |
| 48 | 46 47 | syl | ⊢ ( 𝜑 → ( 0 ..^ ( 𝑁 + 1 ) ) = ( ( 0 ..^ 𝑁 ) ∪ { 𝑁 } ) ) |
| 49 | 38 48 | eqtrd | ⊢ ( 𝜑 → ( 0 ..^ ( ♯ ‘ 𝐻 ) ) = ( ( 0 ..^ 𝑁 ) ∪ { 𝑁 } ) ) |
| 50 | 12 | dmeqd | ⊢ ( 𝜑 → dom ( iEdg ‘ 𝑆 ) = dom ( 𝐼 ∪ { 〈 𝐵 , 𝐸 〉 } ) ) |
| 51 | dmun | ⊢ dom ( 𝐼 ∪ { 〈 𝐵 , 𝐸 〉 } ) = ( dom 𝐼 ∪ dom { 〈 𝐵 , 𝐸 〉 } ) | |
| 52 | 50 51 | eqtrdi | ⊢ ( 𝜑 → dom ( iEdg ‘ 𝑆 ) = ( dom 𝐼 ∪ dom { 〈 𝐵 , 𝐸 〉 } ) ) |
| 53 | 36 49 52 | feq123d | ⊢ ( 𝜑 → ( 𝐻 : ( 0 ..^ ( ♯ ‘ 𝐻 ) ) ⟶ dom ( iEdg ‘ 𝑆 ) ↔ ( 𝐹 ∪ { 〈 𝑁 , 𝐵 〉 } ) : ( ( 0 ..^ 𝑁 ) ∪ { 𝑁 } ) ⟶ ( dom 𝐼 ∪ dom { 〈 𝐵 , 𝐸 〉 } ) ) ) |
| 54 | 35 53 | mpbird | ⊢ ( 𝜑 → 𝐻 : ( 0 ..^ ( ♯ ‘ 𝐻 ) ) ⟶ dom ( iEdg ‘ 𝑆 ) ) |
| 55 | iswrdb | ⊢ ( 𝐻 ∈ Word dom ( iEdg ‘ 𝑆 ) ↔ 𝐻 : ( 0 ..^ ( ♯ ‘ 𝐻 ) ) ⟶ dom ( iEdg ‘ 𝑆 ) ) | |
| 56 | 54 55 | sylibr | ⊢ ( 𝜑 → 𝐻 ∈ Word dom ( iEdg ‘ 𝑆 ) ) |
| 57 | 1 | wlkp | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) |
| 58 | 8 57 | syl | ⊢ ( 𝜑 → 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) |
| 59 | 9 | oveq2i | ⊢ ( 0 ... 𝑁 ) = ( 0 ... ( ♯ ‘ 𝐹 ) ) |
| 60 | 59 | feq2i | ⊢ ( 𝑃 : ( 0 ... 𝑁 ) ⟶ 𝑉 ↔ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) |
| 61 | 58 60 | sylibr | ⊢ ( 𝜑 → 𝑃 : ( 0 ... 𝑁 ) ⟶ 𝑉 ) |
| 62 | ovexd | ⊢ ( 𝜑 → ( 𝑁 + 1 ) ∈ V ) | |
| 63 | 62 6 | fsnd | ⊢ ( 𝜑 → { 〈 ( 𝑁 + 1 ) , 𝐶 〉 } : { ( 𝑁 + 1 ) } ⟶ 𝑉 ) |
| 64 | fzp1disj | ⊢ ( ( 0 ... 𝑁 ) ∩ { ( 𝑁 + 1 ) } ) = ∅ | |
| 65 | 64 | a1i | ⊢ ( 𝜑 → ( ( 0 ... 𝑁 ) ∩ { ( 𝑁 + 1 ) } ) = ∅ ) |
| 66 | fun | ⊢ ( ( ( 𝑃 : ( 0 ... 𝑁 ) ⟶ 𝑉 ∧ { 〈 ( 𝑁 + 1 ) , 𝐶 〉 } : { ( 𝑁 + 1 ) } ⟶ 𝑉 ) ∧ ( ( 0 ... 𝑁 ) ∩ { ( 𝑁 + 1 ) } ) = ∅ ) → ( 𝑃 ∪ { 〈 ( 𝑁 + 1 ) , 𝐶 〉 } ) : ( ( 0 ... 𝑁 ) ∪ { ( 𝑁 + 1 ) } ) ⟶ ( 𝑉 ∪ 𝑉 ) ) | |
| 67 | 61 63 65 66 | syl21anc | ⊢ ( 𝜑 → ( 𝑃 ∪ { 〈 ( 𝑁 + 1 ) , 𝐶 〉 } ) : ( ( 0 ... 𝑁 ) ∪ { ( 𝑁 + 1 ) } ) ⟶ ( 𝑉 ∪ 𝑉 ) ) |
| 68 | fzsuc | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 0 ) → ( 0 ... ( 𝑁 + 1 ) ) = ( ( 0 ... 𝑁 ) ∪ { ( 𝑁 + 1 ) } ) ) | |
| 69 | 46 68 | syl | ⊢ ( 𝜑 → ( 0 ... ( 𝑁 + 1 ) ) = ( ( 0 ... 𝑁 ) ∪ { ( 𝑁 + 1 ) } ) ) |
| 70 | unidm | ⊢ ( 𝑉 ∪ 𝑉 ) = 𝑉 | |
| 71 | 70 | eqcomi | ⊢ 𝑉 = ( 𝑉 ∪ 𝑉 ) |
| 72 | 71 | a1i | ⊢ ( 𝜑 → 𝑉 = ( 𝑉 ∪ 𝑉 ) ) |
| 73 | 69 72 | feq23d | ⊢ ( 𝜑 → ( ( 𝑃 ∪ { 〈 ( 𝑁 + 1 ) , 𝐶 〉 } ) : ( 0 ... ( 𝑁 + 1 ) ) ⟶ 𝑉 ↔ ( 𝑃 ∪ { 〈 ( 𝑁 + 1 ) , 𝐶 〉 } ) : ( ( 0 ... 𝑁 ) ∪ { ( 𝑁 + 1 ) } ) ⟶ ( 𝑉 ∪ 𝑉 ) ) ) |
| 74 | 67 73 | mpbird | ⊢ ( 𝜑 → ( 𝑃 ∪ { 〈 ( 𝑁 + 1 ) , 𝐶 〉 } ) : ( 0 ... ( 𝑁 + 1 ) ) ⟶ 𝑉 ) |
| 75 | 14 | a1i | ⊢ ( 𝜑 → 𝑄 = ( 𝑃 ∪ { 〈 ( 𝑁 + 1 ) , 𝐶 〉 } ) ) |
| 76 | 37 | oveq2d | ⊢ ( 𝜑 → ( 0 ... ( ♯ ‘ 𝐻 ) ) = ( 0 ... ( 𝑁 + 1 ) ) ) |
| 77 | 75 76 15 | feq123d | ⊢ ( 𝜑 → ( 𝑄 : ( 0 ... ( ♯ ‘ 𝐻 ) ) ⟶ ( Vtx ‘ 𝑆 ) ↔ ( 𝑃 ∪ { 〈 ( 𝑁 + 1 ) , 𝐶 〉 } ) : ( 0 ... ( 𝑁 + 1 ) ) ⟶ 𝑉 ) ) |
| 78 | 74 77 | mpbird | ⊢ ( 𝜑 → 𝑄 : ( 0 ... ( ♯ ‘ 𝐻 ) ) ⟶ ( Vtx ‘ 𝑆 ) ) |
| 79 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | wlkp1lem8 | ⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐻 ) ) if- ( ( 𝑄 ‘ 𝑘 ) = ( 𝑄 ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑘 ) ) = { ( 𝑄 ‘ 𝑘 ) } , { ( 𝑄 ‘ 𝑘 ) , ( 𝑄 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑘 ) ) ) ) |
| 80 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | wlkp1lem4 | ⊢ ( 𝜑 → ( 𝑆 ∈ V ∧ 𝐻 ∈ V ∧ 𝑄 ∈ V ) ) |
| 81 | eqid | ⊢ ( Vtx ‘ 𝑆 ) = ( Vtx ‘ 𝑆 ) | |
| 82 | eqid | ⊢ ( iEdg ‘ 𝑆 ) = ( iEdg ‘ 𝑆 ) | |
| 83 | 81 82 | iswlk | ⊢ ( ( 𝑆 ∈ V ∧ 𝐻 ∈ V ∧ 𝑄 ∈ V ) → ( 𝐻 ( Walks ‘ 𝑆 ) 𝑄 ↔ ( 𝐻 ∈ Word dom ( iEdg ‘ 𝑆 ) ∧ 𝑄 : ( 0 ... ( ♯ ‘ 𝐻 ) ) ⟶ ( Vtx ‘ 𝑆 ) ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐻 ) ) if- ( ( 𝑄 ‘ 𝑘 ) = ( 𝑄 ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑘 ) ) = { ( 𝑄 ‘ 𝑘 ) } , { ( 𝑄 ‘ 𝑘 ) , ( 𝑄 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑘 ) ) ) ) ) ) |
| 84 | 80 83 | syl | ⊢ ( 𝜑 → ( 𝐻 ( Walks ‘ 𝑆 ) 𝑄 ↔ ( 𝐻 ∈ Word dom ( iEdg ‘ 𝑆 ) ∧ 𝑄 : ( 0 ... ( ♯ ‘ 𝐻 ) ) ⟶ ( Vtx ‘ 𝑆 ) ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐻 ) ) if- ( ( 𝑄 ‘ 𝑘 ) = ( 𝑄 ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑘 ) ) = { ( 𝑄 ‘ 𝑘 ) } , { ( 𝑄 ‘ 𝑘 ) , ( 𝑄 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝑆 ) ‘ ( 𝐻 ‘ 𝑘 ) ) ) ) ) ) |
| 85 | 56 78 79 84 | mpbir3and | ⊢ ( 𝜑 → 𝐻 ( Walks ‘ 𝑆 ) 𝑄 ) |