This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for wlkp1 . (Contributed by AV, 6-Mar-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | wlkp1.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| wlkp1.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | ||
| wlkp1.f | ⊢ ( 𝜑 → Fun 𝐼 ) | ||
| wlkp1.a | ⊢ ( 𝜑 → 𝐼 ∈ Fin ) | ||
| wlkp1.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) | ||
| wlkp1.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) | ||
| wlkp1.d | ⊢ ( 𝜑 → ¬ 𝐵 ∈ dom 𝐼 ) | ||
| wlkp1.w | ⊢ ( 𝜑 → 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) | ||
| wlkp1.n | ⊢ 𝑁 = ( ♯ ‘ 𝐹 ) | ||
| wlkp1.e | ⊢ ( 𝜑 → 𝐸 ∈ ( Edg ‘ 𝐺 ) ) | ||
| wlkp1.x | ⊢ ( 𝜑 → { ( 𝑃 ‘ 𝑁 ) , 𝐶 } ⊆ 𝐸 ) | ||
| wlkp1.u | ⊢ ( 𝜑 → ( iEdg ‘ 𝑆 ) = ( 𝐼 ∪ { 〈 𝐵 , 𝐸 〉 } ) ) | ||
| wlkp1.h | ⊢ 𝐻 = ( 𝐹 ∪ { 〈 𝑁 , 𝐵 〉 } ) | ||
| Assertion | wlkp1lem2 | ⊢ ( 𝜑 → ( ♯ ‘ 𝐻 ) = ( 𝑁 + 1 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wlkp1.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | wlkp1.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| 3 | wlkp1.f | ⊢ ( 𝜑 → Fun 𝐼 ) | |
| 4 | wlkp1.a | ⊢ ( 𝜑 → 𝐼 ∈ Fin ) | |
| 5 | wlkp1.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) | |
| 6 | wlkp1.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) | |
| 7 | wlkp1.d | ⊢ ( 𝜑 → ¬ 𝐵 ∈ dom 𝐼 ) | |
| 8 | wlkp1.w | ⊢ ( 𝜑 → 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) | |
| 9 | wlkp1.n | ⊢ 𝑁 = ( ♯ ‘ 𝐹 ) | |
| 10 | wlkp1.e | ⊢ ( 𝜑 → 𝐸 ∈ ( Edg ‘ 𝐺 ) ) | |
| 11 | wlkp1.x | ⊢ ( 𝜑 → { ( 𝑃 ‘ 𝑁 ) , 𝐶 } ⊆ 𝐸 ) | |
| 12 | wlkp1.u | ⊢ ( 𝜑 → ( iEdg ‘ 𝑆 ) = ( 𝐼 ∪ { 〈 𝐵 , 𝐸 〉 } ) ) | |
| 13 | wlkp1.h | ⊢ 𝐻 = ( 𝐹 ∪ { 〈 𝑁 , 𝐵 〉 } ) | |
| 14 | 13 | fveq2i | ⊢ ( ♯ ‘ 𝐻 ) = ( ♯ ‘ ( 𝐹 ∪ { 〈 𝑁 , 𝐵 〉 } ) ) |
| 15 | 14 | a1i | ⊢ ( 𝜑 → ( ♯ ‘ 𝐻 ) = ( ♯ ‘ ( 𝐹 ∪ { 〈 𝑁 , 𝐵 〉 } ) ) ) |
| 16 | opex | ⊢ 〈 𝑁 , 𝐵 〉 ∈ V | |
| 17 | 2 | wlkf | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → 𝐹 ∈ Word dom 𝐼 ) |
| 18 | wrdfin | ⊢ ( 𝐹 ∈ Word dom 𝐼 → 𝐹 ∈ Fin ) | |
| 19 | 8 17 18 | 3syl | ⊢ ( 𝜑 → 𝐹 ∈ Fin ) |
| 20 | fzonel | ⊢ ¬ ( ♯ ‘ 𝐹 ) ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) | |
| 21 | 20 | a1i | ⊢ ( 𝜑 → ¬ ( ♯ ‘ 𝐹 ) ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
| 22 | eleq1 | ⊢ ( 𝑁 = ( ♯ ‘ 𝐹 ) → ( 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ↔ ( ♯ ‘ 𝐹 ) ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) | |
| 23 | 22 | notbid | ⊢ ( 𝑁 = ( ♯ ‘ 𝐹 ) → ( ¬ 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ↔ ¬ ( ♯ ‘ 𝐹 ) ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) |
| 24 | 21 23 | imbitrrid | ⊢ ( 𝑁 = ( ♯ ‘ 𝐹 ) → ( 𝜑 → ¬ 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) |
| 25 | 9 24 | ax-mp | ⊢ ( 𝜑 → ¬ 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
| 26 | wrdfn | ⊢ ( 𝐹 ∈ Word dom 𝐼 → 𝐹 Fn ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) | |
| 27 | fnop | ⊢ ( ( 𝐹 Fn ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 〈 𝑁 , 𝐵 〉 ∈ 𝐹 ) → 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) | |
| 28 | 27 | ex | ⊢ ( 𝐹 Fn ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → ( 〈 𝑁 , 𝐵 〉 ∈ 𝐹 → 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) |
| 29 | 8 17 26 28 | 4syl | ⊢ ( 𝜑 → ( 〈 𝑁 , 𝐵 〉 ∈ 𝐹 → 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) |
| 30 | 25 29 | mtod | ⊢ ( 𝜑 → ¬ 〈 𝑁 , 𝐵 〉 ∈ 𝐹 ) |
| 31 | 19 30 | jca | ⊢ ( 𝜑 → ( 𝐹 ∈ Fin ∧ ¬ 〈 𝑁 , 𝐵 〉 ∈ 𝐹 ) ) |
| 32 | hashunsng | ⊢ ( 〈 𝑁 , 𝐵 〉 ∈ V → ( ( 𝐹 ∈ Fin ∧ ¬ 〈 𝑁 , 𝐵 〉 ∈ 𝐹 ) → ( ♯ ‘ ( 𝐹 ∪ { 〈 𝑁 , 𝐵 〉 } ) ) = ( ( ♯ ‘ 𝐹 ) + 1 ) ) ) | |
| 33 | 16 31 32 | mpsyl | ⊢ ( 𝜑 → ( ♯ ‘ ( 𝐹 ∪ { 〈 𝑁 , 𝐵 〉 } ) ) = ( ( ♯ ‘ 𝐹 ) + 1 ) ) |
| 34 | 9 | eqcomi | ⊢ ( ♯ ‘ 𝐹 ) = 𝑁 |
| 35 | 34 | a1i | ⊢ ( 𝜑 → ( ♯ ‘ 𝐹 ) = 𝑁 ) |
| 36 | 35 | oveq1d | ⊢ ( 𝜑 → ( ( ♯ ‘ 𝐹 ) + 1 ) = ( 𝑁 + 1 ) ) |
| 37 | 15 33 36 | 3eqtrd | ⊢ ( 𝜑 → ( ♯ ‘ 𝐻 ) = ( 𝑁 + 1 ) ) |