This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for wemapso . Transitivity. (Contributed by Stefan O'Rear, 17-Jan-2015) (Revised by AV, 21-Jul-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | wemapso.t | ⊢ 𝑇 = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑧 ∈ 𝐴 ( ( 𝑥 ‘ 𝑧 ) 𝑆 ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐴 ( 𝑤 𝑅 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) } | |
| wemaplem2.p | ⊢ ( 𝜑 → 𝑃 ∈ ( 𝐵 ↑m 𝐴 ) ) | ||
| wemaplem2.x | ⊢ ( 𝜑 → 𝑋 ∈ ( 𝐵 ↑m 𝐴 ) ) | ||
| wemaplem2.q | ⊢ ( 𝜑 → 𝑄 ∈ ( 𝐵 ↑m 𝐴 ) ) | ||
| wemaplem2.r | ⊢ ( 𝜑 → 𝑅 Or 𝐴 ) | ||
| wemaplem2.s | ⊢ ( 𝜑 → 𝑆 Po 𝐵 ) | ||
| wemaplem2.px1 | ⊢ ( 𝜑 → 𝑎 ∈ 𝐴 ) | ||
| wemaplem2.px2 | ⊢ ( 𝜑 → ( 𝑃 ‘ 𝑎 ) 𝑆 ( 𝑋 ‘ 𝑎 ) ) | ||
| wemaplem2.px3 | ⊢ ( 𝜑 → ∀ 𝑐 ∈ 𝐴 ( 𝑐 𝑅 𝑎 → ( 𝑃 ‘ 𝑐 ) = ( 𝑋 ‘ 𝑐 ) ) ) | ||
| wemaplem2.xq1 | ⊢ ( 𝜑 → 𝑏 ∈ 𝐴 ) | ||
| wemaplem2.xq2 | ⊢ ( 𝜑 → ( 𝑋 ‘ 𝑏 ) 𝑆 ( 𝑄 ‘ 𝑏 ) ) | ||
| wemaplem2.xq3 | ⊢ ( 𝜑 → ∀ 𝑐 ∈ 𝐴 ( 𝑐 𝑅 𝑏 → ( 𝑋 ‘ 𝑐 ) = ( 𝑄 ‘ 𝑐 ) ) ) | ||
| Assertion | wemaplem2 | ⊢ ( 𝜑 → 𝑃 𝑇 𝑄 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wemapso.t | ⊢ 𝑇 = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑧 ∈ 𝐴 ( ( 𝑥 ‘ 𝑧 ) 𝑆 ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐴 ( 𝑤 𝑅 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) } | |
| 2 | wemaplem2.p | ⊢ ( 𝜑 → 𝑃 ∈ ( 𝐵 ↑m 𝐴 ) ) | |
| 3 | wemaplem2.x | ⊢ ( 𝜑 → 𝑋 ∈ ( 𝐵 ↑m 𝐴 ) ) | |
| 4 | wemaplem2.q | ⊢ ( 𝜑 → 𝑄 ∈ ( 𝐵 ↑m 𝐴 ) ) | |
| 5 | wemaplem2.r | ⊢ ( 𝜑 → 𝑅 Or 𝐴 ) | |
| 6 | wemaplem2.s | ⊢ ( 𝜑 → 𝑆 Po 𝐵 ) | |
| 7 | wemaplem2.px1 | ⊢ ( 𝜑 → 𝑎 ∈ 𝐴 ) | |
| 8 | wemaplem2.px2 | ⊢ ( 𝜑 → ( 𝑃 ‘ 𝑎 ) 𝑆 ( 𝑋 ‘ 𝑎 ) ) | |
| 9 | wemaplem2.px3 | ⊢ ( 𝜑 → ∀ 𝑐 ∈ 𝐴 ( 𝑐 𝑅 𝑎 → ( 𝑃 ‘ 𝑐 ) = ( 𝑋 ‘ 𝑐 ) ) ) | |
| 10 | wemaplem2.xq1 | ⊢ ( 𝜑 → 𝑏 ∈ 𝐴 ) | |
| 11 | wemaplem2.xq2 | ⊢ ( 𝜑 → ( 𝑋 ‘ 𝑏 ) 𝑆 ( 𝑄 ‘ 𝑏 ) ) | |
| 12 | wemaplem2.xq3 | ⊢ ( 𝜑 → ∀ 𝑐 ∈ 𝐴 ( 𝑐 𝑅 𝑏 → ( 𝑋 ‘ 𝑐 ) = ( 𝑄 ‘ 𝑐 ) ) ) | |
| 13 | 7 10 | ifcld | ⊢ ( 𝜑 → if ( 𝑎 𝑅 𝑏 , 𝑎 , 𝑏 ) ∈ 𝐴 ) |
| 14 | 8 | adantr | ⊢ ( ( 𝜑 ∧ 𝑎 𝑅 𝑏 ) → ( 𝑃 ‘ 𝑎 ) 𝑆 ( 𝑋 ‘ 𝑎 ) ) |
| 15 | breq1 | ⊢ ( 𝑐 = 𝑎 → ( 𝑐 𝑅 𝑏 ↔ 𝑎 𝑅 𝑏 ) ) | |
| 16 | fveq2 | ⊢ ( 𝑐 = 𝑎 → ( 𝑋 ‘ 𝑐 ) = ( 𝑋 ‘ 𝑎 ) ) | |
| 17 | fveq2 | ⊢ ( 𝑐 = 𝑎 → ( 𝑄 ‘ 𝑐 ) = ( 𝑄 ‘ 𝑎 ) ) | |
| 18 | 16 17 | eqeq12d | ⊢ ( 𝑐 = 𝑎 → ( ( 𝑋 ‘ 𝑐 ) = ( 𝑄 ‘ 𝑐 ) ↔ ( 𝑋 ‘ 𝑎 ) = ( 𝑄 ‘ 𝑎 ) ) ) |
| 19 | 15 18 | imbi12d | ⊢ ( 𝑐 = 𝑎 → ( ( 𝑐 𝑅 𝑏 → ( 𝑋 ‘ 𝑐 ) = ( 𝑄 ‘ 𝑐 ) ) ↔ ( 𝑎 𝑅 𝑏 → ( 𝑋 ‘ 𝑎 ) = ( 𝑄 ‘ 𝑎 ) ) ) ) |
| 20 | 19 12 7 | rspcdva | ⊢ ( 𝜑 → ( 𝑎 𝑅 𝑏 → ( 𝑋 ‘ 𝑎 ) = ( 𝑄 ‘ 𝑎 ) ) ) |
| 21 | 20 | imp | ⊢ ( ( 𝜑 ∧ 𝑎 𝑅 𝑏 ) → ( 𝑋 ‘ 𝑎 ) = ( 𝑄 ‘ 𝑎 ) ) |
| 22 | 14 21 | breqtrd | ⊢ ( ( 𝜑 ∧ 𝑎 𝑅 𝑏 ) → ( 𝑃 ‘ 𝑎 ) 𝑆 ( 𝑄 ‘ 𝑎 ) ) |
| 23 | iftrue | ⊢ ( 𝑎 𝑅 𝑏 → if ( 𝑎 𝑅 𝑏 , 𝑎 , 𝑏 ) = 𝑎 ) | |
| 24 | 23 | fveq2d | ⊢ ( 𝑎 𝑅 𝑏 → ( 𝑃 ‘ if ( 𝑎 𝑅 𝑏 , 𝑎 , 𝑏 ) ) = ( 𝑃 ‘ 𝑎 ) ) |
| 25 | 23 | fveq2d | ⊢ ( 𝑎 𝑅 𝑏 → ( 𝑄 ‘ if ( 𝑎 𝑅 𝑏 , 𝑎 , 𝑏 ) ) = ( 𝑄 ‘ 𝑎 ) ) |
| 26 | 24 25 | breq12d | ⊢ ( 𝑎 𝑅 𝑏 → ( ( 𝑃 ‘ if ( 𝑎 𝑅 𝑏 , 𝑎 , 𝑏 ) ) 𝑆 ( 𝑄 ‘ if ( 𝑎 𝑅 𝑏 , 𝑎 , 𝑏 ) ) ↔ ( 𝑃 ‘ 𝑎 ) 𝑆 ( 𝑄 ‘ 𝑎 ) ) ) |
| 27 | 26 | adantl | ⊢ ( ( 𝜑 ∧ 𝑎 𝑅 𝑏 ) → ( ( 𝑃 ‘ if ( 𝑎 𝑅 𝑏 , 𝑎 , 𝑏 ) ) 𝑆 ( 𝑄 ‘ if ( 𝑎 𝑅 𝑏 , 𝑎 , 𝑏 ) ) ↔ ( 𝑃 ‘ 𝑎 ) 𝑆 ( 𝑄 ‘ 𝑎 ) ) ) |
| 28 | 22 27 | mpbird | ⊢ ( ( 𝜑 ∧ 𝑎 𝑅 𝑏 ) → ( 𝑃 ‘ if ( 𝑎 𝑅 𝑏 , 𝑎 , 𝑏 ) ) 𝑆 ( 𝑄 ‘ if ( 𝑎 𝑅 𝑏 , 𝑎 , 𝑏 ) ) ) |
| 29 | 6 | adantr | ⊢ ( ( 𝜑 ∧ 𝑎 = 𝑏 ) → 𝑆 Po 𝐵 ) |
| 30 | elmapi | ⊢ ( 𝑃 ∈ ( 𝐵 ↑m 𝐴 ) → 𝑃 : 𝐴 ⟶ 𝐵 ) | |
| 31 | 2 30 | syl | ⊢ ( 𝜑 → 𝑃 : 𝐴 ⟶ 𝐵 ) |
| 32 | 31 10 | ffvelcdmd | ⊢ ( 𝜑 → ( 𝑃 ‘ 𝑏 ) ∈ 𝐵 ) |
| 33 | elmapi | ⊢ ( 𝑋 ∈ ( 𝐵 ↑m 𝐴 ) → 𝑋 : 𝐴 ⟶ 𝐵 ) | |
| 34 | 3 33 | syl | ⊢ ( 𝜑 → 𝑋 : 𝐴 ⟶ 𝐵 ) |
| 35 | 34 10 | ffvelcdmd | ⊢ ( 𝜑 → ( 𝑋 ‘ 𝑏 ) ∈ 𝐵 ) |
| 36 | elmapi | ⊢ ( 𝑄 ∈ ( 𝐵 ↑m 𝐴 ) → 𝑄 : 𝐴 ⟶ 𝐵 ) | |
| 37 | 4 36 | syl | ⊢ ( 𝜑 → 𝑄 : 𝐴 ⟶ 𝐵 ) |
| 38 | 37 10 | ffvelcdmd | ⊢ ( 𝜑 → ( 𝑄 ‘ 𝑏 ) ∈ 𝐵 ) |
| 39 | 32 35 38 | 3jca | ⊢ ( 𝜑 → ( ( 𝑃 ‘ 𝑏 ) ∈ 𝐵 ∧ ( 𝑋 ‘ 𝑏 ) ∈ 𝐵 ∧ ( 𝑄 ‘ 𝑏 ) ∈ 𝐵 ) ) |
| 40 | 39 | adantr | ⊢ ( ( 𝜑 ∧ 𝑎 = 𝑏 ) → ( ( 𝑃 ‘ 𝑏 ) ∈ 𝐵 ∧ ( 𝑋 ‘ 𝑏 ) ∈ 𝐵 ∧ ( 𝑄 ‘ 𝑏 ) ∈ 𝐵 ) ) |
| 41 | fveq2 | ⊢ ( 𝑎 = 𝑏 → ( 𝑃 ‘ 𝑎 ) = ( 𝑃 ‘ 𝑏 ) ) | |
| 42 | fveq2 | ⊢ ( 𝑎 = 𝑏 → ( 𝑋 ‘ 𝑎 ) = ( 𝑋 ‘ 𝑏 ) ) | |
| 43 | 41 42 | breq12d | ⊢ ( 𝑎 = 𝑏 → ( ( 𝑃 ‘ 𝑎 ) 𝑆 ( 𝑋 ‘ 𝑎 ) ↔ ( 𝑃 ‘ 𝑏 ) 𝑆 ( 𝑋 ‘ 𝑏 ) ) ) |
| 44 | 8 43 | syl5ibcom | ⊢ ( 𝜑 → ( 𝑎 = 𝑏 → ( 𝑃 ‘ 𝑏 ) 𝑆 ( 𝑋 ‘ 𝑏 ) ) ) |
| 45 | 44 | imp | ⊢ ( ( 𝜑 ∧ 𝑎 = 𝑏 ) → ( 𝑃 ‘ 𝑏 ) 𝑆 ( 𝑋 ‘ 𝑏 ) ) |
| 46 | 11 | adantr | ⊢ ( ( 𝜑 ∧ 𝑎 = 𝑏 ) → ( 𝑋 ‘ 𝑏 ) 𝑆 ( 𝑄 ‘ 𝑏 ) ) |
| 47 | potr | ⊢ ( ( 𝑆 Po 𝐵 ∧ ( ( 𝑃 ‘ 𝑏 ) ∈ 𝐵 ∧ ( 𝑋 ‘ 𝑏 ) ∈ 𝐵 ∧ ( 𝑄 ‘ 𝑏 ) ∈ 𝐵 ) ) → ( ( ( 𝑃 ‘ 𝑏 ) 𝑆 ( 𝑋 ‘ 𝑏 ) ∧ ( 𝑋 ‘ 𝑏 ) 𝑆 ( 𝑄 ‘ 𝑏 ) ) → ( 𝑃 ‘ 𝑏 ) 𝑆 ( 𝑄 ‘ 𝑏 ) ) ) | |
| 48 | 47 | imp | ⊢ ( ( ( 𝑆 Po 𝐵 ∧ ( ( 𝑃 ‘ 𝑏 ) ∈ 𝐵 ∧ ( 𝑋 ‘ 𝑏 ) ∈ 𝐵 ∧ ( 𝑄 ‘ 𝑏 ) ∈ 𝐵 ) ) ∧ ( ( 𝑃 ‘ 𝑏 ) 𝑆 ( 𝑋 ‘ 𝑏 ) ∧ ( 𝑋 ‘ 𝑏 ) 𝑆 ( 𝑄 ‘ 𝑏 ) ) ) → ( 𝑃 ‘ 𝑏 ) 𝑆 ( 𝑄 ‘ 𝑏 ) ) |
| 49 | 29 40 45 46 48 | syl22anc | ⊢ ( ( 𝜑 ∧ 𝑎 = 𝑏 ) → ( 𝑃 ‘ 𝑏 ) 𝑆 ( 𝑄 ‘ 𝑏 ) ) |
| 50 | ifeq1 | ⊢ ( 𝑎 = 𝑏 → if ( 𝑎 𝑅 𝑏 , 𝑎 , 𝑏 ) = if ( 𝑎 𝑅 𝑏 , 𝑏 , 𝑏 ) ) | |
| 51 | ifid | ⊢ if ( 𝑎 𝑅 𝑏 , 𝑏 , 𝑏 ) = 𝑏 | |
| 52 | 50 51 | eqtrdi | ⊢ ( 𝑎 = 𝑏 → if ( 𝑎 𝑅 𝑏 , 𝑎 , 𝑏 ) = 𝑏 ) |
| 53 | 52 | fveq2d | ⊢ ( 𝑎 = 𝑏 → ( 𝑃 ‘ if ( 𝑎 𝑅 𝑏 , 𝑎 , 𝑏 ) ) = ( 𝑃 ‘ 𝑏 ) ) |
| 54 | 52 | fveq2d | ⊢ ( 𝑎 = 𝑏 → ( 𝑄 ‘ if ( 𝑎 𝑅 𝑏 , 𝑎 , 𝑏 ) ) = ( 𝑄 ‘ 𝑏 ) ) |
| 55 | 53 54 | breq12d | ⊢ ( 𝑎 = 𝑏 → ( ( 𝑃 ‘ if ( 𝑎 𝑅 𝑏 , 𝑎 , 𝑏 ) ) 𝑆 ( 𝑄 ‘ if ( 𝑎 𝑅 𝑏 , 𝑎 , 𝑏 ) ) ↔ ( 𝑃 ‘ 𝑏 ) 𝑆 ( 𝑄 ‘ 𝑏 ) ) ) |
| 56 | 55 | adantl | ⊢ ( ( 𝜑 ∧ 𝑎 = 𝑏 ) → ( ( 𝑃 ‘ if ( 𝑎 𝑅 𝑏 , 𝑎 , 𝑏 ) ) 𝑆 ( 𝑄 ‘ if ( 𝑎 𝑅 𝑏 , 𝑎 , 𝑏 ) ) ↔ ( 𝑃 ‘ 𝑏 ) 𝑆 ( 𝑄 ‘ 𝑏 ) ) ) |
| 57 | 49 56 | mpbird | ⊢ ( ( 𝜑 ∧ 𝑎 = 𝑏 ) → ( 𝑃 ‘ if ( 𝑎 𝑅 𝑏 , 𝑎 , 𝑏 ) ) 𝑆 ( 𝑄 ‘ if ( 𝑎 𝑅 𝑏 , 𝑎 , 𝑏 ) ) ) |
| 58 | breq1 | ⊢ ( 𝑐 = 𝑏 → ( 𝑐 𝑅 𝑎 ↔ 𝑏 𝑅 𝑎 ) ) | |
| 59 | fveq2 | ⊢ ( 𝑐 = 𝑏 → ( 𝑃 ‘ 𝑐 ) = ( 𝑃 ‘ 𝑏 ) ) | |
| 60 | fveq2 | ⊢ ( 𝑐 = 𝑏 → ( 𝑋 ‘ 𝑐 ) = ( 𝑋 ‘ 𝑏 ) ) | |
| 61 | 59 60 | eqeq12d | ⊢ ( 𝑐 = 𝑏 → ( ( 𝑃 ‘ 𝑐 ) = ( 𝑋 ‘ 𝑐 ) ↔ ( 𝑃 ‘ 𝑏 ) = ( 𝑋 ‘ 𝑏 ) ) ) |
| 62 | 58 61 | imbi12d | ⊢ ( 𝑐 = 𝑏 → ( ( 𝑐 𝑅 𝑎 → ( 𝑃 ‘ 𝑐 ) = ( 𝑋 ‘ 𝑐 ) ) ↔ ( 𝑏 𝑅 𝑎 → ( 𝑃 ‘ 𝑏 ) = ( 𝑋 ‘ 𝑏 ) ) ) ) |
| 63 | 62 9 10 | rspcdva | ⊢ ( 𝜑 → ( 𝑏 𝑅 𝑎 → ( 𝑃 ‘ 𝑏 ) = ( 𝑋 ‘ 𝑏 ) ) ) |
| 64 | 63 | imp | ⊢ ( ( 𝜑 ∧ 𝑏 𝑅 𝑎 ) → ( 𝑃 ‘ 𝑏 ) = ( 𝑋 ‘ 𝑏 ) ) |
| 65 | 11 | adantr | ⊢ ( ( 𝜑 ∧ 𝑏 𝑅 𝑎 ) → ( 𝑋 ‘ 𝑏 ) 𝑆 ( 𝑄 ‘ 𝑏 ) ) |
| 66 | 64 65 | eqbrtrd | ⊢ ( ( 𝜑 ∧ 𝑏 𝑅 𝑎 ) → ( 𝑃 ‘ 𝑏 ) 𝑆 ( 𝑄 ‘ 𝑏 ) ) |
| 67 | sopo | ⊢ ( 𝑅 Or 𝐴 → 𝑅 Po 𝐴 ) | |
| 68 | 5 67 | syl | ⊢ ( 𝜑 → 𝑅 Po 𝐴 ) |
| 69 | po2nr | ⊢ ( ( 𝑅 Po 𝐴 ∧ ( 𝑏 ∈ 𝐴 ∧ 𝑎 ∈ 𝐴 ) ) → ¬ ( 𝑏 𝑅 𝑎 ∧ 𝑎 𝑅 𝑏 ) ) | |
| 70 | 68 10 7 69 | syl12anc | ⊢ ( 𝜑 → ¬ ( 𝑏 𝑅 𝑎 ∧ 𝑎 𝑅 𝑏 ) ) |
| 71 | nan | ⊢ ( ( 𝜑 → ¬ ( 𝑏 𝑅 𝑎 ∧ 𝑎 𝑅 𝑏 ) ) ↔ ( ( 𝜑 ∧ 𝑏 𝑅 𝑎 ) → ¬ 𝑎 𝑅 𝑏 ) ) | |
| 72 | 70 71 | mpbi | ⊢ ( ( 𝜑 ∧ 𝑏 𝑅 𝑎 ) → ¬ 𝑎 𝑅 𝑏 ) |
| 73 | iffalse | ⊢ ( ¬ 𝑎 𝑅 𝑏 → if ( 𝑎 𝑅 𝑏 , 𝑎 , 𝑏 ) = 𝑏 ) | |
| 74 | 73 | fveq2d | ⊢ ( ¬ 𝑎 𝑅 𝑏 → ( 𝑃 ‘ if ( 𝑎 𝑅 𝑏 , 𝑎 , 𝑏 ) ) = ( 𝑃 ‘ 𝑏 ) ) |
| 75 | 73 | fveq2d | ⊢ ( ¬ 𝑎 𝑅 𝑏 → ( 𝑄 ‘ if ( 𝑎 𝑅 𝑏 , 𝑎 , 𝑏 ) ) = ( 𝑄 ‘ 𝑏 ) ) |
| 76 | 74 75 | breq12d | ⊢ ( ¬ 𝑎 𝑅 𝑏 → ( ( 𝑃 ‘ if ( 𝑎 𝑅 𝑏 , 𝑎 , 𝑏 ) ) 𝑆 ( 𝑄 ‘ if ( 𝑎 𝑅 𝑏 , 𝑎 , 𝑏 ) ) ↔ ( 𝑃 ‘ 𝑏 ) 𝑆 ( 𝑄 ‘ 𝑏 ) ) ) |
| 77 | 72 76 | syl | ⊢ ( ( 𝜑 ∧ 𝑏 𝑅 𝑎 ) → ( ( 𝑃 ‘ if ( 𝑎 𝑅 𝑏 , 𝑎 , 𝑏 ) ) 𝑆 ( 𝑄 ‘ if ( 𝑎 𝑅 𝑏 , 𝑎 , 𝑏 ) ) ↔ ( 𝑃 ‘ 𝑏 ) 𝑆 ( 𝑄 ‘ 𝑏 ) ) ) |
| 78 | 66 77 | mpbird | ⊢ ( ( 𝜑 ∧ 𝑏 𝑅 𝑎 ) → ( 𝑃 ‘ if ( 𝑎 𝑅 𝑏 , 𝑎 , 𝑏 ) ) 𝑆 ( 𝑄 ‘ if ( 𝑎 𝑅 𝑏 , 𝑎 , 𝑏 ) ) ) |
| 79 | solin | ⊢ ( ( 𝑅 Or 𝐴 ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ) → ( 𝑎 𝑅 𝑏 ∨ 𝑎 = 𝑏 ∨ 𝑏 𝑅 𝑎 ) ) | |
| 80 | 5 7 10 79 | syl12anc | ⊢ ( 𝜑 → ( 𝑎 𝑅 𝑏 ∨ 𝑎 = 𝑏 ∨ 𝑏 𝑅 𝑎 ) ) |
| 81 | 28 57 78 80 | mpjao3dan | ⊢ ( 𝜑 → ( 𝑃 ‘ if ( 𝑎 𝑅 𝑏 , 𝑎 , 𝑏 ) ) 𝑆 ( 𝑄 ‘ if ( 𝑎 𝑅 𝑏 , 𝑎 , 𝑏 ) ) ) |
| 82 | r19.26 | ⊢ ( ∀ 𝑐 ∈ 𝐴 ( ( 𝑐 𝑅 𝑎 → ( 𝑃 ‘ 𝑐 ) = ( 𝑋 ‘ 𝑐 ) ) ∧ ( 𝑐 𝑅 𝑏 → ( 𝑋 ‘ 𝑐 ) = ( 𝑄 ‘ 𝑐 ) ) ) ↔ ( ∀ 𝑐 ∈ 𝐴 ( 𝑐 𝑅 𝑎 → ( 𝑃 ‘ 𝑐 ) = ( 𝑋 ‘ 𝑐 ) ) ∧ ∀ 𝑐 ∈ 𝐴 ( 𝑐 𝑅 𝑏 → ( 𝑋 ‘ 𝑐 ) = ( 𝑄 ‘ 𝑐 ) ) ) ) | |
| 83 | 9 12 82 | sylanbrc | ⊢ ( 𝜑 → ∀ 𝑐 ∈ 𝐴 ( ( 𝑐 𝑅 𝑎 → ( 𝑃 ‘ 𝑐 ) = ( 𝑋 ‘ 𝑐 ) ) ∧ ( 𝑐 𝑅 𝑏 → ( 𝑋 ‘ 𝑐 ) = ( 𝑄 ‘ 𝑐 ) ) ) ) |
| 84 | 5 7 10 | 3jca | ⊢ ( 𝜑 → ( 𝑅 Or 𝐴 ∧ 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ) |
| 85 | anim12 | ⊢ ( ( ( 𝑐 𝑅 𝑎 → ( 𝑃 ‘ 𝑐 ) = ( 𝑋 ‘ 𝑐 ) ) ∧ ( 𝑐 𝑅 𝑏 → ( 𝑋 ‘ 𝑐 ) = ( 𝑄 ‘ 𝑐 ) ) ) → ( ( 𝑐 𝑅 𝑎 ∧ 𝑐 𝑅 𝑏 ) → ( ( 𝑃 ‘ 𝑐 ) = ( 𝑋 ‘ 𝑐 ) ∧ ( 𝑋 ‘ 𝑐 ) = ( 𝑄 ‘ 𝑐 ) ) ) ) | |
| 86 | eqtr | ⊢ ( ( ( 𝑃 ‘ 𝑐 ) = ( 𝑋 ‘ 𝑐 ) ∧ ( 𝑋 ‘ 𝑐 ) = ( 𝑄 ‘ 𝑐 ) ) → ( 𝑃 ‘ 𝑐 ) = ( 𝑄 ‘ 𝑐 ) ) | |
| 87 | 85 86 | syl6 | ⊢ ( ( ( 𝑐 𝑅 𝑎 → ( 𝑃 ‘ 𝑐 ) = ( 𝑋 ‘ 𝑐 ) ) ∧ ( 𝑐 𝑅 𝑏 → ( 𝑋 ‘ 𝑐 ) = ( 𝑄 ‘ 𝑐 ) ) ) → ( ( 𝑐 𝑅 𝑎 ∧ 𝑐 𝑅 𝑏 ) → ( 𝑃 ‘ 𝑐 ) = ( 𝑄 ‘ 𝑐 ) ) ) |
| 88 | 87 | ralimi | ⊢ ( ∀ 𝑐 ∈ 𝐴 ( ( 𝑐 𝑅 𝑎 → ( 𝑃 ‘ 𝑐 ) = ( 𝑋 ‘ 𝑐 ) ) ∧ ( 𝑐 𝑅 𝑏 → ( 𝑋 ‘ 𝑐 ) = ( 𝑄 ‘ 𝑐 ) ) ) → ∀ 𝑐 ∈ 𝐴 ( ( 𝑐 𝑅 𝑎 ∧ 𝑐 𝑅 𝑏 ) → ( 𝑃 ‘ 𝑐 ) = ( 𝑄 ‘ 𝑐 ) ) ) |
| 89 | simpl1 | ⊢ ( ( ( 𝑅 Or 𝐴 ∧ 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ∧ 𝑐 ∈ 𝐴 ) → 𝑅 Or 𝐴 ) | |
| 90 | simpr | ⊢ ( ( ( 𝑅 Or 𝐴 ∧ 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ∧ 𝑐 ∈ 𝐴 ) → 𝑐 ∈ 𝐴 ) | |
| 91 | simpl2 | ⊢ ( ( ( 𝑅 Or 𝐴 ∧ 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ∧ 𝑐 ∈ 𝐴 ) → 𝑎 ∈ 𝐴 ) | |
| 92 | simpl3 | ⊢ ( ( ( 𝑅 Or 𝐴 ∧ 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ∧ 𝑐 ∈ 𝐴 ) → 𝑏 ∈ 𝐴 ) | |
| 93 | soltmin | ⊢ ( ( 𝑅 Or 𝐴 ∧ ( 𝑐 ∈ 𝐴 ∧ 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ) → ( 𝑐 𝑅 if ( 𝑎 𝑅 𝑏 , 𝑎 , 𝑏 ) ↔ ( 𝑐 𝑅 𝑎 ∧ 𝑐 𝑅 𝑏 ) ) ) | |
| 94 | 89 90 91 92 93 | syl13anc | ⊢ ( ( ( 𝑅 Or 𝐴 ∧ 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ∧ 𝑐 ∈ 𝐴 ) → ( 𝑐 𝑅 if ( 𝑎 𝑅 𝑏 , 𝑎 , 𝑏 ) ↔ ( 𝑐 𝑅 𝑎 ∧ 𝑐 𝑅 𝑏 ) ) ) |
| 95 | 94 | biimpd | ⊢ ( ( ( 𝑅 Or 𝐴 ∧ 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ∧ 𝑐 ∈ 𝐴 ) → ( 𝑐 𝑅 if ( 𝑎 𝑅 𝑏 , 𝑎 , 𝑏 ) → ( 𝑐 𝑅 𝑎 ∧ 𝑐 𝑅 𝑏 ) ) ) |
| 96 | 95 | imim1d | ⊢ ( ( ( 𝑅 Or 𝐴 ∧ 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) ∧ 𝑐 ∈ 𝐴 ) → ( ( ( 𝑐 𝑅 𝑎 ∧ 𝑐 𝑅 𝑏 ) → ( 𝑃 ‘ 𝑐 ) = ( 𝑄 ‘ 𝑐 ) ) → ( 𝑐 𝑅 if ( 𝑎 𝑅 𝑏 , 𝑎 , 𝑏 ) → ( 𝑃 ‘ 𝑐 ) = ( 𝑄 ‘ 𝑐 ) ) ) ) |
| 97 | 96 | ralimdva | ⊢ ( ( 𝑅 Or 𝐴 ∧ 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐴 ) → ( ∀ 𝑐 ∈ 𝐴 ( ( 𝑐 𝑅 𝑎 ∧ 𝑐 𝑅 𝑏 ) → ( 𝑃 ‘ 𝑐 ) = ( 𝑄 ‘ 𝑐 ) ) → ∀ 𝑐 ∈ 𝐴 ( 𝑐 𝑅 if ( 𝑎 𝑅 𝑏 , 𝑎 , 𝑏 ) → ( 𝑃 ‘ 𝑐 ) = ( 𝑄 ‘ 𝑐 ) ) ) ) |
| 98 | 84 88 97 | syl2im | ⊢ ( 𝜑 → ( ∀ 𝑐 ∈ 𝐴 ( ( 𝑐 𝑅 𝑎 → ( 𝑃 ‘ 𝑐 ) = ( 𝑋 ‘ 𝑐 ) ) ∧ ( 𝑐 𝑅 𝑏 → ( 𝑋 ‘ 𝑐 ) = ( 𝑄 ‘ 𝑐 ) ) ) → ∀ 𝑐 ∈ 𝐴 ( 𝑐 𝑅 if ( 𝑎 𝑅 𝑏 , 𝑎 , 𝑏 ) → ( 𝑃 ‘ 𝑐 ) = ( 𝑄 ‘ 𝑐 ) ) ) ) |
| 99 | 83 98 | mpd | ⊢ ( 𝜑 → ∀ 𝑐 ∈ 𝐴 ( 𝑐 𝑅 if ( 𝑎 𝑅 𝑏 , 𝑎 , 𝑏 ) → ( 𝑃 ‘ 𝑐 ) = ( 𝑄 ‘ 𝑐 ) ) ) |
| 100 | fveq2 | ⊢ ( 𝑑 = if ( 𝑎 𝑅 𝑏 , 𝑎 , 𝑏 ) → ( 𝑃 ‘ 𝑑 ) = ( 𝑃 ‘ if ( 𝑎 𝑅 𝑏 , 𝑎 , 𝑏 ) ) ) | |
| 101 | fveq2 | ⊢ ( 𝑑 = if ( 𝑎 𝑅 𝑏 , 𝑎 , 𝑏 ) → ( 𝑄 ‘ 𝑑 ) = ( 𝑄 ‘ if ( 𝑎 𝑅 𝑏 , 𝑎 , 𝑏 ) ) ) | |
| 102 | 100 101 | breq12d | ⊢ ( 𝑑 = if ( 𝑎 𝑅 𝑏 , 𝑎 , 𝑏 ) → ( ( 𝑃 ‘ 𝑑 ) 𝑆 ( 𝑄 ‘ 𝑑 ) ↔ ( 𝑃 ‘ if ( 𝑎 𝑅 𝑏 , 𝑎 , 𝑏 ) ) 𝑆 ( 𝑄 ‘ if ( 𝑎 𝑅 𝑏 , 𝑎 , 𝑏 ) ) ) ) |
| 103 | breq2 | ⊢ ( 𝑑 = if ( 𝑎 𝑅 𝑏 , 𝑎 , 𝑏 ) → ( 𝑐 𝑅 𝑑 ↔ 𝑐 𝑅 if ( 𝑎 𝑅 𝑏 , 𝑎 , 𝑏 ) ) ) | |
| 104 | 103 | imbi1d | ⊢ ( 𝑑 = if ( 𝑎 𝑅 𝑏 , 𝑎 , 𝑏 ) → ( ( 𝑐 𝑅 𝑑 → ( 𝑃 ‘ 𝑐 ) = ( 𝑄 ‘ 𝑐 ) ) ↔ ( 𝑐 𝑅 if ( 𝑎 𝑅 𝑏 , 𝑎 , 𝑏 ) → ( 𝑃 ‘ 𝑐 ) = ( 𝑄 ‘ 𝑐 ) ) ) ) |
| 105 | 104 | ralbidv | ⊢ ( 𝑑 = if ( 𝑎 𝑅 𝑏 , 𝑎 , 𝑏 ) → ( ∀ 𝑐 ∈ 𝐴 ( 𝑐 𝑅 𝑑 → ( 𝑃 ‘ 𝑐 ) = ( 𝑄 ‘ 𝑐 ) ) ↔ ∀ 𝑐 ∈ 𝐴 ( 𝑐 𝑅 if ( 𝑎 𝑅 𝑏 , 𝑎 , 𝑏 ) → ( 𝑃 ‘ 𝑐 ) = ( 𝑄 ‘ 𝑐 ) ) ) ) |
| 106 | 102 105 | anbi12d | ⊢ ( 𝑑 = if ( 𝑎 𝑅 𝑏 , 𝑎 , 𝑏 ) → ( ( ( 𝑃 ‘ 𝑑 ) 𝑆 ( 𝑄 ‘ 𝑑 ) ∧ ∀ 𝑐 ∈ 𝐴 ( 𝑐 𝑅 𝑑 → ( 𝑃 ‘ 𝑐 ) = ( 𝑄 ‘ 𝑐 ) ) ) ↔ ( ( 𝑃 ‘ if ( 𝑎 𝑅 𝑏 , 𝑎 , 𝑏 ) ) 𝑆 ( 𝑄 ‘ if ( 𝑎 𝑅 𝑏 , 𝑎 , 𝑏 ) ) ∧ ∀ 𝑐 ∈ 𝐴 ( 𝑐 𝑅 if ( 𝑎 𝑅 𝑏 , 𝑎 , 𝑏 ) → ( 𝑃 ‘ 𝑐 ) = ( 𝑄 ‘ 𝑐 ) ) ) ) ) |
| 107 | 106 | rspcev | ⊢ ( ( if ( 𝑎 𝑅 𝑏 , 𝑎 , 𝑏 ) ∈ 𝐴 ∧ ( ( 𝑃 ‘ if ( 𝑎 𝑅 𝑏 , 𝑎 , 𝑏 ) ) 𝑆 ( 𝑄 ‘ if ( 𝑎 𝑅 𝑏 , 𝑎 , 𝑏 ) ) ∧ ∀ 𝑐 ∈ 𝐴 ( 𝑐 𝑅 if ( 𝑎 𝑅 𝑏 , 𝑎 , 𝑏 ) → ( 𝑃 ‘ 𝑐 ) = ( 𝑄 ‘ 𝑐 ) ) ) ) → ∃ 𝑑 ∈ 𝐴 ( ( 𝑃 ‘ 𝑑 ) 𝑆 ( 𝑄 ‘ 𝑑 ) ∧ ∀ 𝑐 ∈ 𝐴 ( 𝑐 𝑅 𝑑 → ( 𝑃 ‘ 𝑐 ) = ( 𝑄 ‘ 𝑐 ) ) ) ) |
| 108 | 13 81 99 107 | syl12anc | ⊢ ( 𝜑 → ∃ 𝑑 ∈ 𝐴 ( ( 𝑃 ‘ 𝑑 ) 𝑆 ( 𝑄 ‘ 𝑑 ) ∧ ∀ 𝑐 ∈ 𝐴 ( 𝑐 𝑅 𝑑 → ( 𝑃 ‘ 𝑐 ) = ( 𝑄 ‘ 𝑐 ) ) ) ) |
| 109 | 1 | wemaplem1 | ⊢ ( ( 𝑃 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝑄 ∈ ( 𝐵 ↑m 𝐴 ) ) → ( 𝑃 𝑇 𝑄 ↔ ∃ 𝑑 ∈ 𝐴 ( ( 𝑃 ‘ 𝑑 ) 𝑆 ( 𝑄 ‘ 𝑑 ) ∧ ∀ 𝑐 ∈ 𝐴 ( 𝑐 𝑅 𝑑 → ( 𝑃 ‘ 𝑐 ) = ( 𝑄 ‘ 𝑐 ) ) ) ) ) |
| 110 | 2 4 109 | syl2anc | ⊢ ( 𝜑 → ( 𝑃 𝑇 𝑄 ↔ ∃ 𝑑 ∈ 𝐴 ( ( 𝑃 ‘ 𝑑 ) 𝑆 ( 𝑄 ‘ 𝑑 ) ∧ ∀ 𝑐 ∈ 𝐴 ( 𝑐 𝑅 𝑑 → ( 𝑃 ‘ 𝑐 ) = ( 𝑄 ‘ 𝑐 ) ) ) ) ) |
| 111 | 108 110 | mpbird | ⊢ ( 𝜑 → 𝑃 𝑇 𝑄 ) |