This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for wemapso . Transitivity. (Contributed by Stefan O'Rear, 17-Jan-2015) (Revised by AV, 21-Jul-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | wemapso.t | |- T = { <. x , y >. | E. z e. A ( ( x ` z ) S ( y ` z ) /\ A. w e. A ( w R z -> ( x ` w ) = ( y ` w ) ) ) } |
|
| wemaplem2.p | |- ( ph -> P e. ( B ^m A ) ) |
||
| wemaplem2.x | |- ( ph -> X e. ( B ^m A ) ) |
||
| wemaplem2.q | |- ( ph -> Q e. ( B ^m A ) ) |
||
| wemaplem2.r | |- ( ph -> R Or A ) |
||
| wemaplem2.s | |- ( ph -> S Po B ) |
||
| wemaplem2.px1 | |- ( ph -> a e. A ) |
||
| wemaplem2.px2 | |- ( ph -> ( P ` a ) S ( X ` a ) ) |
||
| wemaplem2.px3 | |- ( ph -> A. c e. A ( c R a -> ( P ` c ) = ( X ` c ) ) ) |
||
| wemaplem2.xq1 | |- ( ph -> b e. A ) |
||
| wemaplem2.xq2 | |- ( ph -> ( X ` b ) S ( Q ` b ) ) |
||
| wemaplem2.xq3 | |- ( ph -> A. c e. A ( c R b -> ( X ` c ) = ( Q ` c ) ) ) |
||
| Assertion | wemaplem2 | |- ( ph -> P T Q ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wemapso.t | |- T = { <. x , y >. | E. z e. A ( ( x ` z ) S ( y ` z ) /\ A. w e. A ( w R z -> ( x ` w ) = ( y ` w ) ) ) } |
|
| 2 | wemaplem2.p | |- ( ph -> P e. ( B ^m A ) ) |
|
| 3 | wemaplem2.x | |- ( ph -> X e. ( B ^m A ) ) |
|
| 4 | wemaplem2.q | |- ( ph -> Q e. ( B ^m A ) ) |
|
| 5 | wemaplem2.r | |- ( ph -> R Or A ) |
|
| 6 | wemaplem2.s | |- ( ph -> S Po B ) |
|
| 7 | wemaplem2.px1 | |- ( ph -> a e. A ) |
|
| 8 | wemaplem2.px2 | |- ( ph -> ( P ` a ) S ( X ` a ) ) |
|
| 9 | wemaplem2.px3 | |- ( ph -> A. c e. A ( c R a -> ( P ` c ) = ( X ` c ) ) ) |
|
| 10 | wemaplem2.xq1 | |- ( ph -> b e. A ) |
|
| 11 | wemaplem2.xq2 | |- ( ph -> ( X ` b ) S ( Q ` b ) ) |
|
| 12 | wemaplem2.xq3 | |- ( ph -> A. c e. A ( c R b -> ( X ` c ) = ( Q ` c ) ) ) |
|
| 13 | 7 10 | ifcld | |- ( ph -> if ( a R b , a , b ) e. A ) |
| 14 | 8 | adantr | |- ( ( ph /\ a R b ) -> ( P ` a ) S ( X ` a ) ) |
| 15 | breq1 | |- ( c = a -> ( c R b <-> a R b ) ) |
|
| 16 | fveq2 | |- ( c = a -> ( X ` c ) = ( X ` a ) ) |
|
| 17 | fveq2 | |- ( c = a -> ( Q ` c ) = ( Q ` a ) ) |
|
| 18 | 16 17 | eqeq12d | |- ( c = a -> ( ( X ` c ) = ( Q ` c ) <-> ( X ` a ) = ( Q ` a ) ) ) |
| 19 | 15 18 | imbi12d | |- ( c = a -> ( ( c R b -> ( X ` c ) = ( Q ` c ) ) <-> ( a R b -> ( X ` a ) = ( Q ` a ) ) ) ) |
| 20 | 19 12 7 | rspcdva | |- ( ph -> ( a R b -> ( X ` a ) = ( Q ` a ) ) ) |
| 21 | 20 | imp | |- ( ( ph /\ a R b ) -> ( X ` a ) = ( Q ` a ) ) |
| 22 | 14 21 | breqtrd | |- ( ( ph /\ a R b ) -> ( P ` a ) S ( Q ` a ) ) |
| 23 | iftrue | |- ( a R b -> if ( a R b , a , b ) = a ) |
|
| 24 | 23 | fveq2d | |- ( a R b -> ( P ` if ( a R b , a , b ) ) = ( P ` a ) ) |
| 25 | 23 | fveq2d | |- ( a R b -> ( Q ` if ( a R b , a , b ) ) = ( Q ` a ) ) |
| 26 | 24 25 | breq12d | |- ( a R b -> ( ( P ` if ( a R b , a , b ) ) S ( Q ` if ( a R b , a , b ) ) <-> ( P ` a ) S ( Q ` a ) ) ) |
| 27 | 26 | adantl | |- ( ( ph /\ a R b ) -> ( ( P ` if ( a R b , a , b ) ) S ( Q ` if ( a R b , a , b ) ) <-> ( P ` a ) S ( Q ` a ) ) ) |
| 28 | 22 27 | mpbird | |- ( ( ph /\ a R b ) -> ( P ` if ( a R b , a , b ) ) S ( Q ` if ( a R b , a , b ) ) ) |
| 29 | 6 | adantr | |- ( ( ph /\ a = b ) -> S Po B ) |
| 30 | elmapi | |- ( P e. ( B ^m A ) -> P : A --> B ) |
|
| 31 | 2 30 | syl | |- ( ph -> P : A --> B ) |
| 32 | 31 10 | ffvelcdmd | |- ( ph -> ( P ` b ) e. B ) |
| 33 | elmapi | |- ( X e. ( B ^m A ) -> X : A --> B ) |
|
| 34 | 3 33 | syl | |- ( ph -> X : A --> B ) |
| 35 | 34 10 | ffvelcdmd | |- ( ph -> ( X ` b ) e. B ) |
| 36 | elmapi | |- ( Q e. ( B ^m A ) -> Q : A --> B ) |
|
| 37 | 4 36 | syl | |- ( ph -> Q : A --> B ) |
| 38 | 37 10 | ffvelcdmd | |- ( ph -> ( Q ` b ) e. B ) |
| 39 | 32 35 38 | 3jca | |- ( ph -> ( ( P ` b ) e. B /\ ( X ` b ) e. B /\ ( Q ` b ) e. B ) ) |
| 40 | 39 | adantr | |- ( ( ph /\ a = b ) -> ( ( P ` b ) e. B /\ ( X ` b ) e. B /\ ( Q ` b ) e. B ) ) |
| 41 | fveq2 | |- ( a = b -> ( P ` a ) = ( P ` b ) ) |
|
| 42 | fveq2 | |- ( a = b -> ( X ` a ) = ( X ` b ) ) |
|
| 43 | 41 42 | breq12d | |- ( a = b -> ( ( P ` a ) S ( X ` a ) <-> ( P ` b ) S ( X ` b ) ) ) |
| 44 | 8 43 | syl5ibcom | |- ( ph -> ( a = b -> ( P ` b ) S ( X ` b ) ) ) |
| 45 | 44 | imp | |- ( ( ph /\ a = b ) -> ( P ` b ) S ( X ` b ) ) |
| 46 | 11 | adantr | |- ( ( ph /\ a = b ) -> ( X ` b ) S ( Q ` b ) ) |
| 47 | potr | |- ( ( S Po B /\ ( ( P ` b ) e. B /\ ( X ` b ) e. B /\ ( Q ` b ) e. B ) ) -> ( ( ( P ` b ) S ( X ` b ) /\ ( X ` b ) S ( Q ` b ) ) -> ( P ` b ) S ( Q ` b ) ) ) |
|
| 48 | 47 | imp | |- ( ( ( S Po B /\ ( ( P ` b ) e. B /\ ( X ` b ) e. B /\ ( Q ` b ) e. B ) ) /\ ( ( P ` b ) S ( X ` b ) /\ ( X ` b ) S ( Q ` b ) ) ) -> ( P ` b ) S ( Q ` b ) ) |
| 49 | 29 40 45 46 48 | syl22anc | |- ( ( ph /\ a = b ) -> ( P ` b ) S ( Q ` b ) ) |
| 50 | ifeq1 | |- ( a = b -> if ( a R b , a , b ) = if ( a R b , b , b ) ) |
|
| 51 | ifid | |- if ( a R b , b , b ) = b |
|
| 52 | 50 51 | eqtrdi | |- ( a = b -> if ( a R b , a , b ) = b ) |
| 53 | 52 | fveq2d | |- ( a = b -> ( P ` if ( a R b , a , b ) ) = ( P ` b ) ) |
| 54 | 52 | fveq2d | |- ( a = b -> ( Q ` if ( a R b , a , b ) ) = ( Q ` b ) ) |
| 55 | 53 54 | breq12d | |- ( a = b -> ( ( P ` if ( a R b , a , b ) ) S ( Q ` if ( a R b , a , b ) ) <-> ( P ` b ) S ( Q ` b ) ) ) |
| 56 | 55 | adantl | |- ( ( ph /\ a = b ) -> ( ( P ` if ( a R b , a , b ) ) S ( Q ` if ( a R b , a , b ) ) <-> ( P ` b ) S ( Q ` b ) ) ) |
| 57 | 49 56 | mpbird | |- ( ( ph /\ a = b ) -> ( P ` if ( a R b , a , b ) ) S ( Q ` if ( a R b , a , b ) ) ) |
| 58 | breq1 | |- ( c = b -> ( c R a <-> b R a ) ) |
|
| 59 | fveq2 | |- ( c = b -> ( P ` c ) = ( P ` b ) ) |
|
| 60 | fveq2 | |- ( c = b -> ( X ` c ) = ( X ` b ) ) |
|
| 61 | 59 60 | eqeq12d | |- ( c = b -> ( ( P ` c ) = ( X ` c ) <-> ( P ` b ) = ( X ` b ) ) ) |
| 62 | 58 61 | imbi12d | |- ( c = b -> ( ( c R a -> ( P ` c ) = ( X ` c ) ) <-> ( b R a -> ( P ` b ) = ( X ` b ) ) ) ) |
| 63 | 62 9 10 | rspcdva | |- ( ph -> ( b R a -> ( P ` b ) = ( X ` b ) ) ) |
| 64 | 63 | imp | |- ( ( ph /\ b R a ) -> ( P ` b ) = ( X ` b ) ) |
| 65 | 11 | adantr | |- ( ( ph /\ b R a ) -> ( X ` b ) S ( Q ` b ) ) |
| 66 | 64 65 | eqbrtrd | |- ( ( ph /\ b R a ) -> ( P ` b ) S ( Q ` b ) ) |
| 67 | sopo | |- ( R Or A -> R Po A ) |
|
| 68 | 5 67 | syl | |- ( ph -> R Po A ) |
| 69 | po2nr | |- ( ( R Po A /\ ( b e. A /\ a e. A ) ) -> -. ( b R a /\ a R b ) ) |
|
| 70 | 68 10 7 69 | syl12anc | |- ( ph -> -. ( b R a /\ a R b ) ) |
| 71 | nan | |- ( ( ph -> -. ( b R a /\ a R b ) ) <-> ( ( ph /\ b R a ) -> -. a R b ) ) |
|
| 72 | 70 71 | mpbi | |- ( ( ph /\ b R a ) -> -. a R b ) |
| 73 | iffalse | |- ( -. a R b -> if ( a R b , a , b ) = b ) |
|
| 74 | 73 | fveq2d | |- ( -. a R b -> ( P ` if ( a R b , a , b ) ) = ( P ` b ) ) |
| 75 | 73 | fveq2d | |- ( -. a R b -> ( Q ` if ( a R b , a , b ) ) = ( Q ` b ) ) |
| 76 | 74 75 | breq12d | |- ( -. a R b -> ( ( P ` if ( a R b , a , b ) ) S ( Q ` if ( a R b , a , b ) ) <-> ( P ` b ) S ( Q ` b ) ) ) |
| 77 | 72 76 | syl | |- ( ( ph /\ b R a ) -> ( ( P ` if ( a R b , a , b ) ) S ( Q ` if ( a R b , a , b ) ) <-> ( P ` b ) S ( Q ` b ) ) ) |
| 78 | 66 77 | mpbird | |- ( ( ph /\ b R a ) -> ( P ` if ( a R b , a , b ) ) S ( Q ` if ( a R b , a , b ) ) ) |
| 79 | solin | |- ( ( R Or A /\ ( a e. A /\ b e. A ) ) -> ( a R b \/ a = b \/ b R a ) ) |
|
| 80 | 5 7 10 79 | syl12anc | |- ( ph -> ( a R b \/ a = b \/ b R a ) ) |
| 81 | 28 57 78 80 | mpjao3dan | |- ( ph -> ( P ` if ( a R b , a , b ) ) S ( Q ` if ( a R b , a , b ) ) ) |
| 82 | r19.26 | |- ( A. c e. A ( ( c R a -> ( P ` c ) = ( X ` c ) ) /\ ( c R b -> ( X ` c ) = ( Q ` c ) ) ) <-> ( A. c e. A ( c R a -> ( P ` c ) = ( X ` c ) ) /\ A. c e. A ( c R b -> ( X ` c ) = ( Q ` c ) ) ) ) |
|
| 83 | 9 12 82 | sylanbrc | |- ( ph -> A. c e. A ( ( c R a -> ( P ` c ) = ( X ` c ) ) /\ ( c R b -> ( X ` c ) = ( Q ` c ) ) ) ) |
| 84 | 5 7 10 | 3jca | |- ( ph -> ( R Or A /\ a e. A /\ b e. A ) ) |
| 85 | anim12 | |- ( ( ( c R a -> ( P ` c ) = ( X ` c ) ) /\ ( c R b -> ( X ` c ) = ( Q ` c ) ) ) -> ( ( c R a /\ c R b ) -> ( ( P ` c ) = ( X ` c ) /\ ( X ` c ) = ( Q ` c ) ) ) ) |
|
| 86 | eqtr | |- ( ( ( P ` c ) = ( X ` c ) /\ ( X ` c ) = ( Q ` c ) ) -> ( P ` c ) = ( Q ` c ) ) |
|
| 87 | 85 86 | syl6 | |- ( ( ( c R a -> ( P ` c ) = ( X ` c ) ) /\ ( c R b -> ( X ` c ) = ( Q ` c ) ) ) -> ( ( c R a /\ c R b ) -> ( P ` c ) = ( Q ` c ) ) ) |
| 88 | 87 | ralimi | |- ( A. c e. A ( ( c R a -> ( P ` c ) = ( X ` c ) ) /\ ( c R b -> ( X ` c ) = ( Q ` c ) ) ) -> A. c e. A ( ( c R a /\ c R b ) -> ( P ` c ) = ( Q ` c ) ) ) |
| 89 | simpl1 | |- ( ( ( R Or A /\ a e. A /\ b e. A ) /\ c e. A ) -> R Or A ) |
|
| 90 | simpr | |- ( ( ( R Or A /\ a e. A /\ b e. A ) /\ c e. A ) -> c e. A ) |
|
| 91 | simpl2 | |- ( ( ( R Or A /\ a e. A /\ b e. A ) /\ c e. A ) -> a e. A ) |
|
| 92 | simpl3 | |- ( ( ( R Or A /\ a e. A /\ b e. A ) /\ c e. A ) -> b e. A ) |
|
| 93 | soltmin | |- ( ( R Or A /\ ( c e. A /\ a e. A /\ b e. A ) ) -> ( c R if ( a R b , a , b ) <-> ( c R a /\ c R b ) ) ) |
|
| 94 | 89 90 91 92 93 | syl13anc | |- ( ( ( R Or A /\ a e. A /\ b e. A ) /\ c e. A ) -> ( c R if ( a R b , a , b ) <-> ( c R a /\ c R b ) ) ) |
| 95 | 94 | biimpd | |- ( ( ( R Or A /\ a e. A /\ b e. A ) /\ c e. A ) -> ( c R if ( a R b , a , b ) -> ( c R a /\ c R b ) ) ) |
| 96 | 95 | imim1d | |- ( ( ( R Or A /\ a e. A /\ b e. A ) /\ c e. A ) -> ( ( ( c R a /\ c R b ) -> ( P ` c ) = ( Q ` c ) ) -> ( c R if ( a R b , a , b ) -> ( P ` c ) = ( Q ` c ) ) ) ) |
| 97 | 96 | ralimdva | |- ( ( R Or A /\ a e. A /\ b e. A ) -> ( A. c e. A ( ( c R a /\ c R b ) -> ( P ` c ) = ( Q ` c ) ) -> A. c e. A ( c R if ( a R b , a , b ) -> ( P ` c ) = ( Q ` c ) ) ) ) |
| 98 | 84 88 97 | syl2im | |- ( ph -> ( A. c e. A ( ( c R a -> ( P ` c ) = ( X ` c ) ) /\ ( c R b -> ( X ` c ) = ( Q ` c ) ) ) -> A. c e. A ( c R if ( a R b , a , b ) -> ( P ` c ) = ( Q ` c ) ) ) ) |
| 99 | 83 98 | mpd | |- ( ph -> A. c e. A ( c R if ( a R b , a , b ) -> ( P ` c ) = ( Q ` c ) ) ) |
| 100 | fveq2 | |- ( d = if ( a R b , a , b ) -> ( P ` d ) = ( P ` if ( a R b , a , b ) ) ) |
|
| 101 | fveq2 | |- ( d = if ( a R b , a , b ) -> ( Q ` d ) = ( Q ` if ( a R b , a , b ) ) ) |
|
| 102 | 100 101 | breq12d | |- ( d = if ( a R b , a , b ) -> ( ( P ` d ) S ( Q ` d ) <-> ( P ` if ( a R b , a , b ) ) S ( Q ` if ( a R b , a , b ) ) ) ) |
| 103 | breq2 | |- ( d = if ( a R b , a , b ) -> ( c R d <-> c R if ( a R b , a , b ) ) ) |
|
| 104 | 103 | imbi1d | |- ( d = if ( a R b , a , b ) -> ( ( c R d -> ( P ` c ) = ( Q ` c ) ) <-> ( c R if ( a R b , a , b ) -> ( P ` c ) = ( Q ` c ) ) ) ) |
| 105 | 104 | ralbidv | |- ( d = if ( a R b , a , b ) -> ( A. c e. A ( c R d -> ( P ` c ) = ( Q ` c ) ) <-> A. c e. A ( c R if ( a R b , a , b ) -> ( P ` c ) = ( Q ` c ) ) ) ) |
| 106 | 102 105 | anbi12d | |- ( d = if ( a R b , a , b ) -> ( ( ( P ` d ) S ( Q ` d ) /\ A. c e. A ( c R d -> ( P ` c ) = ( Q ` c ) ) ) <-> ( ( P ` if ( a R b , a , b ) ) S ( Q ` if ( a R b , a , b ) ) /\ A. c e. A ( c R if ( a R b , a , b ) -> ( P ` c ) = ( Q ` c ) ) ) ) ) |
| 107 | 106 | rspcev | |- ( ( if ( a R b , a , b ) e. A /\ ( ( P ` if ( a R b , a , b ) ) S ( Q ` if ( a R b , a , b ) ) /\ A. c e. A ( c R if ( a R b , a , b ) -> ( P ` c ) = ( Q ` c ) ) ) ) -> E. d e. A ( ( P ` d ) S ( Q ` d ) /\ A. c e. A ( c R d -> ( P ` c ) = ( Q ` c ) ) ) ) |
| 108 | 13 81 99 107 | syl12anc | |- ( ph -> E. d e. A ( ( P ` d ) S ( Q ` d ) /\ A. c e. A ( c R d -> ( P ` c ) = ( Q ` c ) ) ) ) |
| 109 | 1 | wemaplem1 | |- ( ( P e. ( B ^m A ) /\ Q e. ( B ^m A ) ) -> ( P T Q <-> E. d e. A ( ( P ` d ) S ( Q ` d ) /\ A. c e. A ( c R d -> ( P ` c ) = ( Q ` c ) ) ) ) ) |
| 110 | 2 4 109 | syl2anc | |- ( ph -> ( P T Q <-> E. d e. A ( ( P ` d ) S ( Q ` d ) /\ A. c e. A ( c R d -> ( P ` c ) = ( Q ` c ) ) ) ) ) |
| 111 | 108 110 | mpbird | |- ( ph -> P T Q ) |