This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for wemapso . Transitivity. (Contributed by Stefan O'Rear, 17-Jan-2015) (Revised by AV, 21-Jul-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | wemapso.t | ⊢ 𝑇 = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑧 ∈ 𝐴 ( ( 𝑥 ‘ 𝑧 ) 𝑆 ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐴 ( 𝑤 𝑅 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) } | |
| wemaplem2.p | ⊢ ( 𝜑 → 𝑃 ∈ ( 𝐵 ↑m 𝐴 ) ) | ||
| wemaplem2.x | ⊢ ( 𝜑 → 𝑋 ∈ ( 𝐵 ↑m 𝐴 ) ) | ||
| wemaplem2.q | ⊢ ( 𝜑 → 𝑄 ∈ ( 𝐵 ↑m 𝐴 ) ) | ||
| wemaplem2.r | ⊢ ( 𝜑 → 𝑅 Or 𝐴 ) | ||
| wemaplem2.s | ⊢ ( 𝜑 → 𝑆 Po 𝐵 ) | ||
| wemaplem3.px | ⊢ ( 𝜑 → 𝑃 𝑇 𝑋 ) | ||
| wemaplem3.xq | ⊢ ( 𝜑 → 𝑋 𝑇 𝑄 ) | ||
| Assertion | wemaplem3 | ⊢ ( 𝜑 → 𝑃 𝑇 𝑄 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wemapso.t | ⊢ 𝑇 = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑧 ∈ 𝐴 ( ( 𝑥 ‘ 𝑧 ) 𝑆 ( 𝑦 ‘ 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐴 ( 𝑤 𝑅 𝑧 → ( 𝑥 ‘ 𝑤 ) = ( 𝑦 ‘ 𝑤 ) ) ) } | |
| 2 | wemaplem2.p | ⊢ ( 𝜑 → 𝑃 ∈ ( 𝐵 ↑m 𝐴 ) ) | |
| 3 | wemaplem2.x | ⊢ ( 𝜑 → 𝑋 ∈ ( 𝐵 ↑m 𝐴 ) ) | |
| 4 | wemaplem2.q | ⊢ ( 𝜑 → 𝑄 ∈ ( 𝐵 ↑m 𝐴 ) ) | |
| 5 | wemaplem2.r | ⊢ ( 𝜑 → 𝑅 Or 𝐴 ) | |
| 6 | wemaplem2.s | ⊢ ( 𝜑 → 𝑆 Po 𝐵 ) | |
| 7 | wemaplem3.px | ⊢ ( 𝜑 → 𝑃 𝑇 𝑋 ) | |
| 8 | wemaplem3.xq | ⊢ ( 𝜑 → 𝑋 𝑇 𝑄 ) | |
| 9 | 1 | wemaplem1 | ⊢ ( ( 𝑃 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝑋 ∈ ( 𝐵 ↑m 𝐴 ) ) → ( 𝑃 𝑇 𝑋 ↔ ∃ 𝑎 ∈ 𝐴 ( ( 𝑃 ‘ 𝑎 ) 𝑆 ( 𝑋 ‘ 𝑎 ) ∧ ∀ 𝑐 ∈ 𝐴 ( 𝑐 𝑅 𝑎 → ( 𝑃 ‘ 𝑐 ) = ( 𝑋 ‘ 𝑐 ) ) ) ) ) |
| 10 | 2 3 9 | syl2anc | ⊢ ( 𝜑 → ( 𝑃 𝑇 𝑋 ↔ ∃ 𝑎 ∈ 𝐴 ( ( 𝑃 ‘ 𝑎 ) 𝑆 ( 𝑋 ‘ 𝑎 ) ∧ ∀ 𝑐 ∈ 𝐴 ( 𝑐 𝑅 𝑎 → ( 𝑃 ‘ 𝑐 ) = ( 𝑋 ‘ 𝑐 ) ) ) ) ) |
| 11 | 7 10 | mpbid | ⊢ ( 𝜑 → ∃ 𝑎 ∈ 𝐴 ( ( 𝑃 ‘ 𝑎 ) 𝑆 ( 𝑋 ‘ 𝑎 ) ∧ ∀ 𝑐 ∈ 𝐴 ( 𝑐 𝑅 𝑎 → ( 𝑃 ‘ 𝑐 ) = ( 𝑋 ‘ 𝑐 ) ) ) ) |
| 12 | 1 | wemaplem1 | ⊢ ( ( 𝑋 ∈ ( 𝐵 ↑m 𝐴 ) ∧ 𝑄 ∈ ( 𝐵 ↑m 𝐴 ) ) → ( 𝑋 𝑇 𝑄 ↔ ∃ 𝑏 ∈ 𝐴 ( ( 𝑋 ‘ 𝑏 ) 𝑆 ( 𝑄 ‘ 𝑏 ) ∧ ∀ 𝑐 ∈ 𝐴 ( 𝑐 𝑅 𝑏 → ( 𝑋 ‘ 𝑐 ) = ( 𝑄 ‘ 𝑐 ) ) ) ) ) |
| 13 | 3 4 12 | syl2anc | ⊢ ( 𝜑 → ( 𝑋 𝑇 𝑄 ↔ ∃ 𝑏 ∈ 𝐴 ( ( 𝑋 ‘ 𝑏 ) 𝑆 ( 𝑄 ‘ 𝑏 ) ∧ ∀ 𝑐 ∈ 𝐴 ( 𝑐 𝑅 𝑏 → ( 𝑋 ‘ 𝑐 ) = ( 𝑄 ‘ 𝑐 ) ) ) ) ) |
| 14 | 8 13 | mpbid | ⊢ ( 𝜑 → ∃ 𝑏 ∈ 𝐴 ( ( 𝑋 ‘ 𝑏 ) 𝑆 ( 𝑄 ‘ 𝑏 ) ∧ ∀ 𝑐 ∈ 𝐴 ( 𝑐 𝑅 𝑏 → ( 𝑋 ‘ 𝑐 ) = ( 𝑄 ‘ 𝑐 ) ) ) ) |
| 15 | 2 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐴 ∧ ( ( 𝑃 ‘ 𝑎 ) 𝑆 ( 𝑋 ‘ 𝑎 ) ∧ ∀ 𝑐 ∈ 𝐴 ( 𝑐 𝑅 𝑎 → ( 𝑃 ‘ 𝑐 ) = ( 𝑋 ‘ 𝑐 ) ) ) ) ) ∧ ( 𝑏 ∈ 𝐴 ∧ ( ( 𝑋 ‘ 𝑏 ) 𝑆 ( 𝑄 ‘ 𝑏 ) ∧ ∀ 𝑐 ∈ 𝐴 ( 𝑐 𝑅 𝑏 → ( 𝑋 ‘ 𝑐 ) = ( 𝑄 ‘ 𝑐 ) ) ) ) ) → 𝑃 ∈ ( 𝐵 ↑m 𝐴 ) ) |
| 16 | 3 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐴 ∧ ( ( 𝑃 ‘ 𝑎 ) 𝑆 ( 𝑋 ‘ 𝑎 ) ∧ ∀ 𝑐 ∈ 𝐴 ( 𝑐 𝑅 𝑎 → ( 𝑃 ‘ 𝑐 ) = ( 𝑋 ‘ 𝑐 ) ) ) ) ) ∧ ( 𝑏 ∈ 𝐴 ∧ ( ( 𝑋 ‘ 𝑏 ) 𝑆 ( 𝑄 ‘ 𝑏 ) ∧ ∀ 𝑐 ∈ 𝐴 ( 𝑐 𝑅 𝑏 → ( 𝑋 ‘ 𝑐 ) = ( 𝑄 ‘ 𝑐 ) ) ) ) ) → 𝑋 ∈ ( 𝐵 ↑m 𝐴 ) ) |
| 17 | 4 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐴 ∧ ( ( 𝑃 ‘ 𝑎 ) 𝑆 ( 𝑋 ‘ 𝑎 ) ∧ ∀ 𝑐 ∈ 𝐴 ( 𝑐 𝑅 𝑎 → ( 𝑃 ‘ 𝑐 ) = ( 𝑋 ‘ 𝑐 ) ) ) ) ) ∧ ( 𝑏 ∈ 𝐴 ∧ ( ( 𝑋 ‘ 𝑏 ) 𝑆 ( 𝑄 ‘ 𝑏 ) ∧ ∀ 𝑐 ∈ 𝐴 ( 𝑐 𝑅 𝑏 → ( 𝑋 ‘ 𝑐 ) = ( 𝑄 ‘ 𝑐 ) ) ) ) ) → 𝑄 ∈ ( 𝐵 ↑m 𝐴 ) ) |
| 18 | 5 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐴 ∧ ( ( 𝑃 ‘ 𝑎 ) 𝑆 ( 𝑋 ‘ 𝑎 ) ∧ ∀ 𝑐 ∈ 𝐴 ( 𝑐 𝑅 𝑎 → ( 𝑃 ‘ 𝑐 ) = ( 𝑋 ‘ 𝑐 ) ) ) ) ) ∧ ( 𝑏 ∈ 𝐴 ∧ ( ( 𝑋 ‘ 𝑏 ) 𝑆 ( 𝑄 ‘ 𝑏 ) ∧ ∀ 𝑐 ∈ 𝐴 ( 𝑐 𝑅 𝑏 → ( 𝑋 ‘ 𝑐 ) = ( 𝑄 ‘ 𝑐 ) ) ) ) ) → 𝑅 Or 𝐴 ) |
| 19 | 6 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐴 ∧ ( ( 𝑃 ‘ 𝑎 ) 𝑆 ( 𝑋 ‘ 𝑎 ) ∧ ∀ 𝑐 ∈ 𝐴 ( 𝑐 𝑅 𝑎 → ( 𝑃 ‘ 𝑐 ) = ( 𝑋 ‘ 𝑐 ) ) ) ) ) ∧ ( 𝑏 ∈ 𝐴 ∧ ( ( 𝑋 ‘ 𝑏 ) 𝑆 ( 𝑄 ‘ 𝑏 ) ∧ ∀ 𝑐 ∈ 𝐴 ( 𝑐 𝑅 𝑏 → ( 𝑋 ‘ 𝑐 ) = ( 𝑄 ‘ 𝑐 ) ) ) ) ) → 𝑆 Po 𝐵 ) |
| 20 | simplrl | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐴 ∧ ( ( 𝑃 ‘ 𝑎 ) 𝑆 ( 𝑋 ‘ 𝑎 ) ∧ ∀ 𝑐 ∈ 𝐴 ( 𝑐 𝑅 𝑎 → ( 𝑃 ‘ 𝑐 ) = ( 𝑋 ‘ 𝑐 ) ) ) ) ) ∧ ( 𝑏 ∈ 𝐴 ∧ ( ( 𝑋 ‘ 𝑏 ) 𝑆 ( 𝑄 ‘ 𝑏 ) ∧ ∀ 𝑐 ∈ 𝐴 ( 𝑐 𝑅 𝑏 → ( 𝑋 ‘ 𝑐 ) = ( 𝑄 ‘ 𝑐 ) ) ) ) ) → 𝑎 ∈ 𝐴 ) | |
| 21 | simp2rl | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐴 ∧ ( ( 𝑃 ‘ 𝑎 ) 𝑆 ( 𝑋 ‘ 𝑎 ) ∧ ∀ 𝑐 ∈ 𝐴 ( 𝑐 𝑅 𝑎 → ( 𝑃 ‘ 𝑐 ) = ( 𝑋 ‘ 𝑐 ) ) ) ) ∧ ( 𝑏 ∈ 𝐴 ∧ ( ( 𝑋 ‘ 𝑏 ) 𝑆 ( 𝑄 ‘ 𝑏 ) ∧ ∀ 𝑐 ∈ 𝐴 ( 𝑐 𝑅 𝑏 → ( 𝑋 ‘ 𝑐 ) = ( 𝑄 ‘ 𝑐 ) ) ) ) ) → ( 𝑃 ‘ 𝑎 ) 𝑆 ( 𝑋 ‘ 𝑎 ) ) | |
| 22 | 21 | 3expa | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐴 ∧ ( ( 𝑃 ‘ 𝑎 ) 𝑆 ( 𝑋 ‘ 𝑎 ) ∧ ∀ 𝑐 ∈ 𝐴 ( 𝑐 𝑅 𝑎 → ( 𝑃 ‘ 𝑐 ) = ( 𝑋 ‘ 𝑐 ) ) ) ) ) ∧ ( 𝑏 ∈ 𝐴 ∧ ( ( 𝑋 ‘ 𝑏 ) 𝑆 ( 𝑄 ‘ 𝑏 ) ∧ ∀ 𝑐 ∈ 𝐴 ( 𝑐 𝑅 𝑏 → ( 𝑋 ‘ 𝑐 ) = ( 𝑄 ‘ 𝑐 ) ) ) ) ) → ( 𝑃 ‘ 𝑎 ) 𝑆 ( 𝑋 ‘ 𝑎 ) ) |
| 23 | simprr | ⊢ ( ( 𝑎 ∈ 𝐴 ∧ ( ( 𝑃 ‘ 𝑎 ) 𝑆 ( 𝑋 ‘ 𝑎 ) ∧ ∀ 𝑐 ∈ 𝐴 ( 𝑐 𝑅 𝑎 → ( 𝑃 ‘ 𝑐 ) = ( 𝑋 ‘ 𝑐 ) ) ) ) → ∀ 𝑐 ∈ 𝐴 ( 𝑐 𝑅 𝑎 → ( 𝑃 ‘ 𝑐 ) = ( 𝑋 ‘ 𝑐 ) ) ) | |
| 24 | 23 | ad2antlr | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐴 ∧ ( ( 𝑃 ‘ 𝑎 ) 𝑆 ( 𝑋 ‘ 𝑎 ) ∧ ∀ 𝑐 ∈ 𝐴 ( 𝑐 𝑅 𝑎 → ( 𝑃 ‘ 𝑐 ) = ( 𝑋 ‘ 𝑐 ) ) ) ) ) ∧ ( 𝑏 ∈ 𝐴 ∧ ( ( 𝑋 ‘ 𝑏 ) 𝑆 ( 𝑄 ‘ 𝑏 ) ∧ ∀ 𝑐 ∈ 𝐴 ( 𝑐 𝑅 𝑏 → ( 𝑋 ‘ 𝑐 ) = ( 𝑄 ‘ 𝑐 ) ) ) ) ) → ∀ 𝑐 ∈ 𝐴 ( 𝑐 𝑅 𝑎 → ( 𝑃 ‘ 𝑐 ) = ( 𝑋 ‘ 𝑐 ) ) ) |
| 25 | simprl | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐴 ∧ ( ( 𝑃 ‘ 𝑎 ) 𝑆 ( 𝑋 ‘ 𝑎 ) ∧ ∀ 𝑐 ∈ 𝐴 ( 𝑐 𝑅 𝑎 → ( 𝑃 ‘ 𝑐 ) = ( 𝑋 ‘ 𝑐 ) ) ) ) ) ∧ ( 𝑏 ∈ 𝐴 ∧ ( ( 𝑋 ‘ 𝑏 ) 𝑆 ( 𝑄 ‘ 𝑏 ) ∧ ∀ 𝑐 ∈ 𝐴 ( 𝑐 𝑅 𝑏 → ( 𝑋 ‘ 𝑐 ) = ( 𝑄 ‘ 𝑐 ) ) ) ) ) → 𝑏 ∈ 𝐴 ) | |
| 26 | simprrl | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐴 ∧ ( ( 𝑃 ‘ 𝑎 ) 𝑆 ( 𝑋 ‘ 𝑎 ) ∧ ∀ 𝑐 ∈ 𝐴 ( 𝑐 𝑅 𝑎 → ( 𝑃 ‘ 𝑐 ) = ( 𝑋 ‘ 𝑐 ) ) ) ) ) ∧ ( 𝑏 ∈ 𝐴 ∧ ( ( 𝑋 ‘ 𝑏 ) 𝑆 ( 𝑄 ‘ 𝑏 ) ∧ ∀ 𝑐 ∈ 𝐴 ( 𝑐 𝑅 𝑏 → ( 𝑋 ‘ 𝑐 ) = ( 𝑄 ‘ 𝑐 ) ) ) ) ) → ( 𝑋 ‘ 𝑏 ) 𝑆 ( 𝑄 ‘ 𝑏 ) ) | |
| 27 | simprrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐴 ∧ ( ( 𝑃 ‘ 𝑎 ) 𝑆 ( 𝑋 ‘ 𝑎 ) ∧ ∀ 𝑐 ∈ 𝐴 ( 𝑐 𝑅 𝑎 → ( 𝑃 ‘ 𝑐 ) = ( 𝑋 ‘ 𝑐 ) ) ) ) ) ∧ ( 𝑏 ∈ 𝐴 ∧ ( ( 𝑋 ‘ 𝑏 ) 𝑆 ( 𝑄 ‘ 𝑏 ) ∧ ∀ 𝑐 ∈ 𝐴 ( 𝑐 𝑅 𝑏 → ( 𝑋 ‘ 𝑐 ) = ( 𝑄 ‘ 𝑐 ) ) ) ) ) → ∀ 𝑐 ∈ 𝐴 ( 𝑐 𝑅 𝑏 → ( 𝑋 ‘ 𝑐 ) = ( 𝑄 ‘ 𝑐 ) ) ) | |
| 28 | 1 15 16 17 18 19 20 22 24 25 26 27 | wemaplem2 | ⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐴 ∧ ( ( 𝑃 ‘ 𝑎 ) 𝑆 ( 𝑋 ‘ 𝑎 ) ∧ ∀ 𝑐 ∈ 𝐴 ( 𝑐 𝑅 𝑎 → ( 𝑃 ‘ 𝑐 ) = ( 𝑋 ‘ 𝑐 ) ) ) ) ) ∧ ( 𝑏 ∈ 𝐴 ∧ ( ( 𝑋 ‘ 𝑏 ) 𝑆 ( 𝑄 ‘ 𝑏 ) ∧ ∀ 𝑐 ∈ 𝐴 ( 𝑐 𝑅 𝑏 → ( 𝑋 ‘ 𝑐 ) = ( 𝑄 ‘ 𝑐 ) ) ) ) ) → 𝑃 𝑇 𝑄 ) |
| 29 | 28 | rexlimdvaa | ⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝐴 ∧ ( ( 𝑃 ‘ 𝑎 ) 𝑆 ( 𝑋 ‘ 𝑎 ) ∧ ∀ 𝑐 ∈ 𝐴 ( 𝑐 𝑅 𝑎 → ( 𝑃 ‘ 𝑐 ) = ( 𝑋 ‘ 𝑐 ) ) ) ) ) → ( ∃ 𝑏 ∈ 𝐴 ( ( 𝑋 ‘ 𝑏 ) 𝑆 ( 𝑄 ‘ 𝑏 ) ∧ ∀ 𝑐 ∈ 𝐴 ( 𝑐 𝑅 𝑏 → ( 𝑋 ‘ 𝑐 ) = ( 𝑄 ‘ 𝑐 ) ) ) → 𝑃 𝑇 𝑄 ) ) |
| 30 | 29 | rexlimdvaa | ⊢ ( 𝜑 → ( ∃ 𝑎 ∈ 𝐴 ( ( 𝑃 ‘ 𝑎 ) 𝑆 ( 𝑋 ‘ 𝑎 ) ∧ ∀ 𝑐 ∈ 𝐴 ( 𝑐 𝑅 𝑎 → ( 𝑃 ‘ 𝑐 ) = ( 𝑋 ‘ 𝑐 ) ) ) → ( ∃ 𝑏 ∈ 𝐴 ( ( 𝑋 ‘ 𝑏 ) 𝑆 ( 𝑄 ‘ 𝑏 ) ∧ ∀ 𝑐 ∈ 𝐴 ( 𝑐 𝑅 𝑏 → ( 𝑋 ‘ 𝑐 ) = ( 𝑄 ‘ 𝑐 ) ) ) → 𝑃 𝑇 𝑄 ) ) ) |
| 31 | 11 14 30 | mp2d | ⊢ ( 𝜑 → 𝑃 𝑇 𝑄 ) |