This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A partial order has no 2-cycle loops. (Contributed by NM, 27-Mar-1997)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | po2nr | ⊢ ( ( 𝑅 Po 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ) ) → ¬ ( 𝐵 𝑅 𝐶 ∧ 𝐶 𝑅 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | poirr | ⊢ ( ( 𝑅 Po 𝐴 ∧ 𝐵 ∈ 𝐴 ) → ¬ 𝐵 𝑅 𝐵 ) | |
| 2 | 1 | adantrr | ⊢ ( ( 𝑅 Po 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ) ) → ¬ 𝐵 𝑅 𝐵 ) |
| 3 | potr | ⊢ ( ( 𝑅 Po 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ∧ 𝐵 ∈ 𝐴 ) ) → ( ( 𝐵 𝑅 𝐶 ∧ 𝐶 𝑅 𝐵 ) → 𝐵 𝑅 𝐵 ) ) | |
| 4 | 3 | 3exp2 | ⊢ ( 𝑅 Po 𝐴 → ( 𝐵 ∈ 𝐴 → ( 𝐶 ∈ 𝐴 → ( 𝐵 ∈ 𝐴 → ( ( 𝐵 𝑅 𝐶 ∧ 𝐶 𝑅 𝐵 ) → 𝐵 𝑅 𝐵 ) ) ) ) ) |
| 5 | 4 | com34 | ⊢ ( 𝑅 Po 𝐴 → ( 𝐵 ∈ 𝐴 → ( 𝐵 ∈ 𝐴 → ( 𝐶 ∈ 𝐴 → ( ( 𝐵 𝑅 𝐶 ∧ 𝐶 𝑅 𝐵 ) → 𝐵 𝑅 𝐵 ) ) ) ) ) |
| 6 | 5 | pm2.43d | ⊢ ( 𝑅 Po 𝐴 → ( 𝐵 ∈ 𝐴 → ( 𝐶 ∈ 𝐴 → ( ( 𝐵 𝑅 𝐶 ∧ 𝐶 𝑅 𝐵 ) → 𝐵 𝑅 𝐵 ) ) ) ) |
| 7 | 6 | imp32 | ⊢ ( ( 𝑅 Po 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ) ) → ( ( 𝐵 𝑅 𝐶 ∧ 𝐶 𝑅 𝐵 ) → 𝐵 𝑅 𝐵 ) ) |
| 8 | 2 7 | mtod | ⊢ ( ( 𝑅 Po 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ) ) → ¬ ( 𝐵 𝑅 𝐶 ∧ 𝐶 𝑅 𝐵 ) ) |