This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The degree of a vertex v in the induced subgraph S of a pseudograph G obtained by removing one vertex N plus the number of edges joining the vertex v and the vertex N is the degree of the vertex v in the pseudograph G . (Contributed by AV, 17-Dec-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | vtxdginducedm1.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| vtxdginducedm1.e | ⊢ 𝐸 = ( iEdg ‘ 𝐺 ) | ||
| vtxdginducedm1.k | ⊢ 𝐾 = ( 𝑉 ∖ { 𝑁 } ) | ||
| vtxdginducedm1.i | ⊢ 𝐼 = { 𝑖 ∈ dom 𝐸 ∣ 𝑁 ∉ ( 𝐸 ‘ 𝑖 ) } | ||
| vtxdginducedm1.p | ⊢ 𝑃 = ( 𝐸 ↾ 𝐼 ) | ||
| vtxdginducedm1.s | ⊢ 𝑆 = 〈 𝐾 , 𝑃 〉 | ||
| vtxdginducedm1.j | ⊢ 𝐽 = { 𝑖 ∈ dom 𝐸 ∣ 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) } | ||
| Assertion | vtxdginducedm1 | ⊢ ∀ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = ( ( ( VtxDeg ‘ 𝑆 ) ‘ 𝑣 ) +𝑒 ( ♯ ‘ { 𝑙 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑙 ) } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vtxdginducedm1.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | vtxdginducedm1.e | ⊢ 𝐸 = ( iEdg ‘ 𝐺 ) | |
| 3 | vtxdginducedm1.k | ⊢ 𝐾 = ( 𝑉 ∖ { 𝑁 } ) | |
| 4 | vtxdginducedm1.i | ⊢ 𝐼 = { 𝑖 ∈ dom 𝐸 ∣ 𝑁 ∉ ( 𝐸 ‘ 𝑖 ) } | |
| 5 | vtxdginducedm1.p | ⊢ 𝑃 = ( 𝐸 ↾ 𝐼 ) | |
| 6 | vtxdginducedm1.s | ⊢ 𝑆 = 〈 𝐾 , 𝑃 〉 | |
| 7 | vtxdginducedm1.j | ⊢ 𝐽 = { 𝑖 ∈ dom 𝐸 ∣ 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) } | |
| 8 | 7 4 | elnelun | ⊢ ( 𝐽 ∪ 𝐼 ) = dom 𝐸 |
| 9 | 8 | eqcomi | ⊢ dom 𝐸 = ( 𝐽 ∪ 𝐼 ) |
| 10 | 9 | rabeqi | ⊢ { 𝑘 ∈ dom 𝐸 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } = { 𝑘 ∈ ( 𝐽 ∪ 𝐼 ) ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } |
| 11 | rabun2 | ⊢ { 𝑘 ∈ ( 𝐽 ∪ 𝐼 ) ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } = ( { 𝑘 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ∪ { 𝑘 ∈ 𝐼 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) | |
| 12 | 10 11 | eqtri | ⊢ { 𝑘 ∈ dom 𝐸 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } = ( { 𝑘 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ∪ { 𝑘 ∈ 𝐼 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) |
| 13 | 12 | fveq2i | ⊢ ( ♯ ‘ { 𝑘 ∈ dom 𝐸 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) = ( ♯ ‘ ( { 𝑘 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ∪ { 𝑘 ∈ 𝐼 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) ) |
| 14 | 2 | fvexi | ⊢ 𝐸 ∈ V |
| 15 | 14 | dmex | ⊢ dom 𝐸 ∈ V |
| 16 | 7 15 | rab2ex | ⊢ { 𝑘 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ∈ V |
| 17 | 4 15 | rab2ex | ⊢ { 𝑘 ∈ 𝐼 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ∈ V |
| 18 | ssrab2 | ⊢ { 𝑘 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ⊆ 𝐽 | |
| 19 | ssrab2 | ⊢ { 𝑘 ∈ 𝐼 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ⊆ 𝐼 | |
| 20 | ss2in | ⊢ ( ( { 𝑘 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ⊆ 𝐽 ∧ { 𝑘 ∈ 𝐼 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ⊆ 𝐼 ) → ( { 𝑘 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ∩ { 𝑘 ∈ 𝐼 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) ⊆ ( 𝐽 ∩ 𝐼 ) ) | |
| 21 | 18 19 20 | mp2an | ⊢ ( { 𝑘 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ∩ { 𝑘 ∈ 𝐼 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) ⊆ ( 𝐽 ∩ 𝐼 ) |
| 22 | 7 4 | elneldisj | ⊢ ( 𝐽 ∩ 𝐼 ) = ∅ |
| 23 | 22 | sseq2i | ⊢ ( ( { 𝑘 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ∩ { 𝑘 ∈ 𝐼 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) ⊆ ( 𝐽 ∩ 𝐼 ) ↔ ( { 𝑘 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ∩ { 𝑘 ∈ 𝐼 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) ⊆ ∅ ) |
| 24 | ss0 | ⊢ ( ( { 𝑘 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ∩ { 𝑘 ∈ 𝐼 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) ⊆ ∅ → ( { 𝑘 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ∩ { 𝑘 ∈ 𝐼 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) = ∅ ) | |
| 25 | 23 24 | sylbi | ⊢ ( ( { 𝑘 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ∩ { 𝑘 ∈ 𝐼 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) ⊆ ( 𝐽 ∩ 𝐼 ) → ( { 𝑘 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ∩ { 𝑘 ∈ 𝐼 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) = ∅ ) |
| 26 | 21 25 | ax-mp | ⊢ ( { 𝑘 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ∩ { 𝑘 ∈ 𝐼 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) = ∅ |
| 27 | hashunx | ⊢ ( ( { 𝑘 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ∈ V ∧ { 𝑘 ∈ 𝐼 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ∈ V ∧ ( { 𝑘 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ∩ { 𝑘 ∈ 𝐼 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) = ∅ ) → ( ♯ ‘ ( { 𝑘 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ∪ { 𝑘 ∈ 𝐼 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) ) = ( ( ♯ ‘ { 𝑘 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) +𝑒 ( ♯ ‘ { 𝑘 ∈ 𝐼 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) ) ) | |
| 28 | 16 17 26 27 | mp3an | ⊢ ( ♯ ‘ ( { 𝑘 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ∪ { 𝑘 ∈ 𝐼 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) ) = ( ( ♯ ‘ { 𝑘 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) +𝑒 ( ♯ ‘ { 𝑘 ∈ 𝐼 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) ) |
| 29 | 13 28 | eqtri | ⊢ ( ♯ ‘ { 𝑘 ∈ dom 𝐸 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) = ( ( ♯ ‘ { 𝑘 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) +𝑒 ( ♯ ‘ { 𝑘 ∈ 𝐼 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) ) |
| 30 | 9 | rabeqi | ⊢ { 𝑘 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } = { 𝑘 ∈ ( 𝐽 ∪ 𝐼 ) ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } |
| 31 | rabun2 | ⊢ { 𝑘 ∈ ( 𝐽 ∪ 𝐼 ) ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } = ( { 𝑘 ∈ 𝐽 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ∪ { 𝑘 ∈ 𝐼 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ) | |
| 32 | 30 31 | eqtri | ⊢ { 𝑘 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } = ( { 𝑘 ∈ 𝐽 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ∪ { 𝑘 ∈ 𝐼 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ) |
| 33 | 32 | fveq2i | ⊢ ( ♯ ‘ { 𝑘 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ) = ( ♯ ‘ ( { 𝑘 ∈ 𝐽 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ∪ { 𝑘 ∈ 𝐼 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ) ) |
| 34 | 7 15 | rab2ex | ⊢ { 𝑘 ∈ 𝐽 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ∈ V |
| 35 | 4 15 | rab2ex | ⊢ { 𝑘 ∈ 𝐼 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ∈ V |
| 36 | ssrab2 | ⊢ { 𝑘 ∈ 𝐽 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ⊆ 𝐽 | |
| 37 | ssrab2 | ⊢ { 𝑘 ∈ 𝐼 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ⊆ 𝐼 | |
| 38 | ss2in | ⊢ ( ( { 𝑘 ∈ 𝐽 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ⊆ 𝐽 ∧ { 𝑘 ∈ 𝐼 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ⊆ 𝐼 ) → ( { 𝑘 ∈ 𝐽 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ∩ { 𝑘 ∈ 𝐼 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ) ⊆ ( 𝐽 ∩ 𝐼 ) ) | |
| 39 | 36 37 38 | mp2an | ⊢ ( { 𝑘 ∈ 𝐽 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ∩ { 𝑘 ∈ 𝐼 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ) ⊆ ( 𝐽 ∩ 𝐼 ) |
| 40 | 22 | sseq2i | ⊢ ( ( { 𝑘 ∈ 𝐽 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ∩ { 𝑘 ∈ 𝐼 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ) ⊆ ( 𝐽 ∩ 𝐼 ) ↔ ( { 𝑘 ∈ 𝐽 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ∩ { 𝑘 ∈ 𝐼 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ) ⊆ ∅ ) |
| 41 | ss0 | ⊢ ( ( { 𝑘 ∈ 𝐽 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ∩ { 𝑘 ∈ 𝐼 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ) ⊆ ∅ → ( { 𝑘 ∈ 𝐽 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ∩ { 𝑘 ∈ 𝐼 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ) = ∅ ) | |
| 42 | 40 41 | sylbi | ⊢ ( ( { 𝑘 ∈ 𝐽 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ∩ { 𝑘 ∈ 𝐼 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ) ⊆ ( 𝐽 ∩ 𝐼 ) → ( { 𝑘 ∈ 𝐽 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ∩ { 𝑘 ∈ 𝐼 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ) = ∅ ) |
| 43 | 39 42 | ax-mp | ⊢ ( { 𝑘 ∈ 𝐽 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ∩ { 𝑘 ∈ 𝐼 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ) = ∅ |
| 44 | hashunx | ⊢ ( ( { 𝑘 ∈ 𝐽 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ∈ V ∧ { 𝑘 ∈ 𝐼 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ∈ V ∧ ( { 𝑘 ∈ 𝐽 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ∩ { 𝑘 ∈ 𝐼 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ) = ∅ ) → ( ♯ ‘ ( { 𝑘 ∈ 𝐽 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ∪ { 𝑘 ∈ 𝐼 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ) ) = ( ( ♯ ‘ { 𝑘 ∈ 𝐽 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ) +𝑒 ( ♯ ‘ { 𝑘 ∈ 𝐼 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ) ) ) | |
| 45 | 34 35 43 44 | mp3an | ⊢ ( ♯ ‘ ( { 𝑘 ∈ 𝐽 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ∪ { 𝑘 ∈ 𝐼 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ) ) = ( ( ♯ ‘ { 𝑘 ∈ 𝐽 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ) +𝑒 ( ♯ ‘ { 𝑘 ∈ 𝐼 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ) ) |
| 46 | 33 45 | eqtri | ⊢ ( ♯ ‘ { 𝑘 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ) = ( ( ♯ ‘ { 𝑘 ∈ 𝐽 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ) +𝑒 ( ♯ ‘ { 𝑘 ∈ 𝐼 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ) ) |
| 47 | 29 46 | oveq12i | ⊢ ( ( ♯ ‘ { 𝑘 ∈ dom 𝐸 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) +𝑒 ( ♯ ‘ { 𝑘 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ) ) = ( ( ( ♯ ‘ { 𝑘 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) +𝑒 ( ♯ ‘ { 𝑘 ∈ 𝐼 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) ) +𝑒 ( ( ♯ ‘ { 𝑘 ∈ 𝐽 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ) +𝑒 ( ♯ ‘ { 𝑘 ∈ 𝐼 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ) ) ) |
| 48 | hashxnn0 | ⊢ ( { 𝑘 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ∈ V → ( ♯ ‘ { 𝑘 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) ∈ ℕ0* ) | |
| 49 | 16 48 | ax-mp | ⊢ ( ♯ ‘ { 𝑘 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) ∈ ℕ0* |
| 50 | 49 | a1i | ⊢ ( 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) → ( ♯ ‘ { 𝑘 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) ∈ ℕ0* ) |
| 51 | hashxnn0 | ⊢ ( { 𝑘 ∈ 𝐼 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ∈ V → ( ♯ ‘ { 𝑘 ∈ 𝐼 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) ∈ ℕ0* ) | |
| 52 | 17 51 | ax-mp | ⊢ ( ♯ ‘ { 𝑘 ∈ 𝐼 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) ∈ ℕ0* |
| 53 | 52 | a1i | ⊢ ( 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) → ( ♯ ‘ { 𝑘 ∈ 𝐼 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) ∈ ℕ0* ) |
| 54 | hashxnn0 | ⊢ ( { 𝑘 ∈ 𝐽 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ∈ V → ( ♯ ‘ { 𝑘 ∈ 𝐽 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ) ∈ ℕ0* ) | |
| 55 | 34 54 | ax-mp | ⊢ ( ♯ ‘ { 𝑘 ∈ 𝐽 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ) ∈ ℕ0* |
| 56 | 55 | a1i | ⊢ ( 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) → ( ♯ ‘ { 𝑘 ∈ 𝐽 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ) ∈ ℕ0* ) |
| 57 | hashxnn0 | ⊢ ( { 𝑘 ∈ 𝐼 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ∈ V → ( ♯ ‘ { 𝑘 ∈ 𝐼 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ) ∈ ℕ0* ) | |
| 58 | 35 57 | ax-mp | ⊢ ( ♯ ‘ { 𝑘 ∈ 𝐼 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ) ∈ ℕ0* |
| 59 | 58 | a1i | ⊢ ( 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) → ( ♯ ‘ { 𝑘 ∈ 𝐼 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ) ∈ ℕ0* ) |
| 60 | 50 53 56 59 | xnn0add4d | ⊢ ( 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) → ( ( ( ♯ ‘ { 𝑘 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) +𝑒 ( ♯ ‘ { 𝑘 ∈ 𝐼 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) ) +𝑒 ( ( ♯ ‘ { 𝑘 ∈ 𝐽 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ) +𝑒 ( ♯ ‘ { 𝑘 ∈ 𝐼 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ) ) ) = ( ( ( ♯ ‘ { 𝑘 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) +𝑒 ( ♯ ‘ { 𝑘 ∈ 𝐽 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ) ) +𝑒 ( ( ♯ ‘ { 𝑘 ∈ 𝐼 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) +𝑒 ( ♯ ‘ { 𝑘 ∈ 𝐼 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ) ) ) ) |
| 61 | xnn0xaddcl | ⊢ ( ( ( ♯ ‘ { 𝑘 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) ∈ ℕ0* ∧ ( ♯ ‘ { 𝑘 ∈ 𝐽 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ) ∈ ℕ0* ) → ( ( ♯ ‘ { 𝑘 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) +𝑒 ( ♯ ‘ { 𝑘 ∈ 𝐽 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ) ) ∈ ℕ0* ) | |
| 62 | 49 55 61 | mp2an | ⊢ ( ( ♯ ‘ { 𝑘 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) +𝑒 ( ♯ ‘ { 𝑘 ∈ 𝐽 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ) ) ∈ ℕ0* |
| 63 | xnn0xr | ⊢ ( ( ( ♯ ‘ { 𝑘 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) +𝑒 ( ♯ ‘ { 𝑘 ∈ 𝐽 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ) ) ∈ ℕ0* → ( ( ♯ ‘ { 𝑘 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) +𝑒 ( ♯ ‘ { 𝑘 ∈ 𝐽 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ) ) ∈ ℝ* ) | |
| 64 | 62 63 | ax-mp | ⊢ ( ( ♯ ‘ { 𝑘 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) +𝑒 ( ♯ ‘ { 𝑘 ∈ 𝐽 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ) ) ∈ ℝ* |
| 65 | xnn0xaddcl | ⊢ ( ( ( ♯ ‘ { 𝑘 ∈ 𝐼 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) ∈ ℕ0* ∧ ( ♯ ‘ { 𝑘 ∈ 𝐼 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ) ∈ ℕ0* ) → ( ( ♯ ‘ { 𝑘 ∈ 𝐼 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) +𝑒 ( ♯ ‘ { 𝑘 ∈ 𝐼 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ) ) ∈ ℕ0* ) | |
| 66 | 52 58 65 | mp2an | ⊢ ( ( ♯ ‘ { 𝑘 ∈ 𝐼 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) +𝑒 ( ♯ ‘ { 𝑘 ∈ 𝐼 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ) ) ∈ ℕ0* |
| 67 | xnn0xr | ⊢ ( ( ( ♯ ‘ { 𝑘 ∈ 𝐼 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) +𝑒 ( ♯ ‘ { 𝑘 ∈ 𝐼 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ) ) ∈ ℕ0* → ( ( ♯ ‘ { 𝑘 ∈ 𝐼 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) +𝑒 ( ♯ ‘ { 𝑘 ∈ 𝐼 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ) ) ∈ ℝ* ) | |
| 68 | 66 67 | ax-mp | ⊢ ( ( ♯ ‘ { 𝑘 ∈ 𝐼 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) +𝑒 ( ♯ ‘ { 𝑘 ∈ 𝐼 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ) ) ∈ ℝ* |
| 69 | xaddcom | ⊢ ( ( ( ( ♯ ‘ { 𝑘 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) +𝑒 ( ♯ ‘ { 𝑘 ∈ 𝐽 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ) ) ∈ ℝ* ∧ ( ( ♯ ‘ { 𝑘 ∈ 𝐼 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) +𝑒 ( ♯ ‘ { 𝑘 ∈ 𝐼 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ) ) ∈ ℝ* ) → ( ( ( ♯ ‘ { 𝑘 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) +𝑒 ( ♯ ‘ { 𝑘 ∈ 𝐽 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ) ) +𝑒 ( ( ♯ ‘ { 𝑘 ∈ 𝐼 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) +𝑒 ( ♯ ‘ { 𝑘 ∈ 𝐼 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ) ) ) = ( ( ( ♯ ‘ { 𝑘 ∈ 𝐼 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) +𝑒 ( ♯ ‘ { 𝑘 ∈ 𝐼 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ) ) +𝑒 ( ( ♯ ‘ { 𝑘 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) +𝑒 ( ♯ ‘ { 𝑘 ∈ 𝐽 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ) ) ) ) | |
| 70 | 64 68 69 | mp2an | ⊢ ( ( ( ♯ ‘ { 𝑘 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) +𝑒 ( ♯ ‘ { 𝑘 ∈ 𝐽 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ) ) +𝑒 ( ( ♯ ‘ { 𝑘 ∈ 𝐼 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) +𝑒 ( ♯ ‘ { 𝑘 ∈ 𝐼 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ) ) ) = ( ( ( ♯ ‘ { 𝑘 ∈ 𝐼 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) +𝑒 ( ♯ ‘ { 𝑘 ∈ 𝐼 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ) ) +𝑒 ( ( ♯ ‘ { 𝑘 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) +𝑒 ( ♯ ‘ { 𝑘 ∈ 𝐽 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ) ) ) |
| 71 | 1 2 3 4 5 6 7 | vtxdginducedm1lem4 | ⊢ ( 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) → ( ♯ ‘ { 𝑘 ∈ 𝐽 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ) = 0 ) |
| 72 | 71 | oveq2d | ⊢ ( 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) → ( ( ♯ ‘ { 𝑘 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) +𝑒 ( ♯ ‘ { 𝑘 ∈ 𝐽 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ) ) = ( ( ♯ ‘ { 𝑘 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) +𝑒 0 ) ) |
| 73 | xnn0xr | ⊢ ( ( ♯ ‘ { 𝑘 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) ∈ ℕ0* → ( ♯ ‘ { 𝑘 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) ∈ ℝ* ) | |
| 74 | 49 73 | ax-mp | ⊢ ( ♯ ‘ { 𝑘 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) ∈ ℝ* |
| 75 | xaddrid | ⊢ ( ( ♯ ‘ { 𝑘 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) ∈ ℝ* → ( ( ♯ ‘ { 𝑘 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) +𝑒 0 ) = ( ♯ ‘ { 𝑘 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) ) | |
| 76 | 74 75 | ax-mp | ⊢ ( ( ♯ ‘ { 𝑘 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) +𝑒 0 ) = ( ♯ ‘ { 𝑘 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) |
| 77 | 72 76 | eqtrdi | ⊢ ( 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) → ( ( ♯ ‘ { 𝑘 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) +𝑒 ( ♯ ‘ { 𝑘 ∈ 𝐽 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ) ) = ( ♯ ‘ { 𝑘 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) ) |
| 78 | fveq2 | ⊢ ( 𝑘 = 𝑙 → ( 𝐸 ‘ 𝑘 ) = ( 𝐸 ‘ 𝑙 ) ) | |
| 79 | 78 | eleq2d | ⊢ ( 𝑘 = 𝑙 → ( 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) ↔ 𝑣 ∈ ( 𝐸 ‘ 𝑙 ) ) ) |
| 80 | 79 | cbvrabv | ⊢ { 𝑘 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } = { 𝑙 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑙 ) } |
| 81 | 80 | fveq2i | ⊢ ( ♯ ‘ { 𝑘 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) = ( ♯ ‘ { 𝑙 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑙 ) } ) |
| 82 | 77 81 | eqtrdi | ⊢ ( 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) → ( ( ♯ ‘ { 𝑘 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) +𝑒 ( ♯ ‘ { 𝑘 ∈ 𝐽 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ) ) = ( ♯ ‘ { 𝑙 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑙 ) } ) ) |
| 83 | 82 | oveq2d | ⊢ ( 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) → ( ( ( ♯ ‘ { 𝑘 ∈ 𝐼 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) +𝑒 ( ♯ ‘ { 𝑘 ∈ 𝐼 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ) ) +𝑒 ( ( ♯ ‘ { 𝑘 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) +𝑒 ( ♯ ‘ { 𝑘 ∈ 𝐽 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ) ) ) = ( ( ( ♯ ‘ { 𝑘 ∈ 𝐼 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) +𝑒 ( ♯ ‘ { 𝑘 ∈ 𝐼 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ) ) +𝑒 ( ♯ ‘ { 𝑙 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑙 ) } ) ) ) |
| 84 | 70 83 | eqtrid | ⊢ ( 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) → ( ( ( ♯ ‘ { 𝑘 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) +𝑒 ( ♯ ‘ { 𝑘 ∈ 𝐽 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ) ) +𝑒 ( ( ♯ ‘ { 𝑘 ∈ 𝐼 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) +𝑒 ( ♯ ‘ { 𝑘 ∈ 𝐼 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ) ) ) = ( ( ( ♯ ‘ { 𝑘 ∈ 𝐼 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) +𝑒 ( ♯ ‘ { 𝑘 ∈ 𝐼 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ) ) +𝑒 ( ♯ ‘ { 𝑙 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑙 ) } ) ) ) |
| 85 | 60 84 | eqtrd | ⊢ ( 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) → ( ( ( ♯ ‘ { 𝑘 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) +𝑒 ( ♯ ‘ { 𝑘 ∈ 𝐼 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) ) +𝑒 ( ( ♯ ‘ { 𝑘 ∈ 𝐽 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ) +𝑒 ( ♯ ‘ { 𝑘 ∈ 𝐼 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ) ) ) = ( ( ( ♯ ‘ { 𝑘 ∈ 𝐼 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) +𝑒 ( ♯ ‘ { 𝑘 ∈ 𝐼 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ) ) +𝑒 ( ♯ ‘ { 𝑙 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑙 ) } ) ) ) |
| 86 | 47 85 | eqtrid | ⊢ ( 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) → ( ( ♯ ‘ { 𝑘 ∈ dom 𝐸 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) +𝑒 ( ♯ ‘ { 𝑘 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ) ) = ( ( ( ♯ ‘ { 𝑘 ∈ 𝐼 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) +𝑒 ( ♯ ‘ { 𝑘 ∈ 𝐼 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ) ) +𝑒 ( ♯ ‘ { 𝑙 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑙 ) } ) ) ) |
| 87 | 1 2 3 4 5 6 | vtxdginducedm1lem2 | ⊢ dom ( iEdg ‘ 𝑆 ) = 𝐼 |
| 88 | 87 | rabeqi | ⊢ { 𝑘 ∈ dom ( iEdg ‘ 𝑆 ) ∣ 𝑣 ∈ ( ( iEdg ‘ 𝑆 ) ‘ 𝑘 ) } = { 𝑘 ∈ 𝐼 ∣ 𝑣 ∈ ( ( iEdg ‘ 𝑆 ) ‘ 𝑘 ) } |
| 89 | 1 2 3 4 5 6 | vtxdginducedm1lem3 | ⊢ ( 𝑘 ∈ 𝐼 → ( ( iEdg ‘ 𝑆 ) ‘ 𝑘 ) = ( 𝐸 ‘ 𝑘 ) ) |
| 90 | 89 | eleq2d | ⊢ ( 𝑘 ∈ 𝐼 → ( 𝑣 ∈ ( ( iEdg ‘ 𝑆 ) ‘ 𝑘 ) ↔ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) ) ) |
| 91 | 90 | rabbiia | ⊢ { 𝑘 ∈ 𝐼 ∣ 𝑣 ∈ ( ( iEdg ‘ 𝑆 ) ‘ 𝑘 ) } = { 𝑘 ∈ 𝐼 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } |
| 92 | 88 91 | eqtri | ⊢ { 𝑘 ∈ dom ( iEdg ‘ 𝑆 ) ∣ 𝑣 ∈ ( ( iEdg ‘ 𝑆 ) ‘ 𝑘 ) } = { 𝑘 ∈ 𝐼 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } |
| 93 | 92 | fveq2i | ⊢ ( ♯ ‘ { 𝑘 ∈ dom ( iEdg ‘ 𝑆 ) ∣ 𝑣 ∈ ( ( iEdg ‘ 𝑆 ) ‘ 𝑘 ) } ) = ( ♯ ‘ { 𝑘 ∈ 𝐼 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) |
| 94 | 87 | rabeqi | ⊢ { 𝑘 ∈ dom ( iEdg ‘ 𝑆 ) ∣ ( ( iEdg ‘ 𝑆 ) ‘ 𝑘 ) = { 𝑣 } } = { 𝑘 ∈ 𝐼 ∣ ( ( iEdg ‘ 𝑆 ) ‘ 𝑘 ) = { 𝑣 } } |
| 95 | 89 | eqeq1d | ⊢ ( 𝑘 ∈ 𝐼 → ( ( ( iEdg ‘ 𝑆 ) ‘ 𝑘 ) = { 𝑣 } ↔ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } ) ) |
| 96 | 95 | rabbiia | ⊢ { 𝑘 ∈ 𝐼 ∣ ( ( iEdg ‘ 𝑆 ) ‘ 𝑘 ) = { 𝑣 } } = { 𝑘 ∈ 𝐼 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } |
| 97 | 94 96 | eqtri | ⊢ { 𝑘 ∈ dom ( iEdg ‘ 𝑆 ) ∣ ( ( iEdg ‘ 𝑆 ) ‘ 𝑘 ) = { 𝑣 } } = { 𝑘 ∈ 𝐼 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } |
| 98 | 97 | fveq2i | ⊢ ( ♯ ‘ { 𝑘 ∈ dom ( iEdg ‘ 𝑆 ) ∣ ( ( iEdg ‘ 𝑆 ) ‘ 𝑘 ) = { 𝑣 } } ) = ( ♯ ‘ { 𝑘 ∈ 𝐼 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ) |
| 99 | 93 98 | oveq12i | ⊢ ( ( ♯ ‘ { 𝑘 ∈ dom ( iEdg ‘ 𝑆 ) ∣ 𝑣 ∈ ( ( iEdg ‘ 𝑆 ) ‘ 𝑘 ) } ) +𝑒 ( ♯ ‘ { 𝑘 ∈ dom ( iEdg ‘ 𝑆 ) ∣ ( ( iEdg ‘ 𝑆 ) ‘ 𝑘 ) = { 𝑣 } } ) ) = ( ( ♯ ‘ { 𝑘 ∈ 𝐼 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) +𝑒 ( ♯ ‘ { 𝑘 ∈ 𝐼 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ) ) |
| 100 | 99 | eqcomi | ⊢ ( ( ♯ ‘ { 𝑘 ∈ 𝐼 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) +𝑒 ( ♯ ‘ { 𝑘 ∈ 𝐼 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ) ) = ( ( ♯ ‘ { 𝑘 ∈ dom ( iEdg ‘ 𝑆 ) ∣ 𝑣 ∈ ( ( iEdg ‘ 𝑆 ) ‘ 𝑘 ) } ) +𝑒 ( ♯ ‘ { 𝑘 ∈ dom ( iEdg ‘ 𝑆 ) ∣ ( ( iEdg ‘ 𝑆 ) ‘ 𝑘 ) = { 𝑣 } } ) ) |
| 101 | 100 | oveq1i | ⊢ ( ( ( ♯ ‘ { 𝑘 ∈ 𝐼 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) +𝑒 ( ♯ ‘ { 𝑘 ∈ 𝐼 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ) ) +𝑒 ( ♯ ‘ { 𝑙 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑙 ) } ) ) = ( ( ( ♯ ‘ { 𝑘 ∈ dom ( iEdg ‘ 𝑆 ) ∣ 𝑣 ∈ ( ( iEdg ‘ 𝑆 ) ‘ 𝑘 ) } ) +𝑒 ( ♯ ‘ { 𝑘 ∈ dom ( iEdg ‘ 𝑆 ) ∣ ( ( iEdg ‘ 𝑆 ) ‘ 𝑘 ) = { 𝑣 } } ) ) +𝑒 ( ♯ ‘ { 𝑙 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑙 ) } ) ) |
| 102 | 86 101 | eqtrdi | ⊢ ( 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) → ( ( ♯ ‘ { 𝑘 ∈ dom 𝐸 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) +𝑒 ( ♯ ‘ { 𝑘 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ) ) = ( ( ( ♯ ‘ { 𝑘 ∈ dom ( iEdg ‘ 𝑆 ) ∣ 𝑣 ∈ ( ( iEdg ‘ 𝑆 ) ‘ 𝑘 ) } ) +𝑒 ( ♯ ‘ { 𝑘 ∈ dom ( iEdg ‘ 𝑆 ) ∣ ( ( iEdg ‘ 𝑆 ) ‘ 𝑘 ) = { 𝑣 } } ) ) +𝑒 ( ♯ ‘ { 𝑙 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑙 ) } ) ) ) |
| 103 | eldifi | ⊢ ( 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) → 𝑣 ∈ 𝑉 ) | |
| 104 | eqid | ⊢ dom 𝐸 = dom 𝐸 | |
| 105 | 1 2 104 | vtxdgval | ⊢ ( 𝑣 ∈ 𝑉 → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = ( ( ♯ ‘ { 𝑘 ∈ dom 𝐸 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) +𝑒 ( ♯ ‘ { 𝑘 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ) ) ) |
| 106 | 103 105 | syl | ⊢ ( 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = ( ( ♯ ‘ { 𝑘 ∈ dom 𝐸 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑘 ) } ) +𝑒 ( ♯ ‘ { 𝑘 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑣 } } ) ) ) |
| 107 | 6 | fveq2i | ⊢ ( Vtx ‘ 𝑆 ) = ( Vtx ‘ 〈 𝐾 , 𝑃 〉 ) |
| 108 | 1 | fvexi | ⊢ 𝑉 ∈ V |
| 109 | difexg | ⊢ ( 𝑉 ∈ V → ( 𝑉 ∖ { 𝑁 } ) ∈ V ) | |
| 110 | 3 109 | eqeltrid | ⊢ ( 𝑉 ∈ V → 𝐾 ∈ V ) |
| 111 | 108 110 | ax-mp | ⊢ 𝐾 ∈ V |
| 112 | resexg | ⊢ ( 𝐸 ∈ V → ( 𝐸 ↾ 𝐼 ) ∈ V ) | |
| 113 | 5 112 | eqeltrid | ⊢ ( 𝐸 ∈ V → 𝑃 ∈ V ) |
| 114 | 14 113 | ax-mp | ⊢ 𝑃 ∈ V |
| 115 | 111 114 | opvtxfvi | ⊢ ( Vtx ‘ 〈 𝐾 , 𝑃 〉 ) = 𝐾 |
| 116 | 107 115 | eqtri | ⊢ ( Vtx ‘ 𝑆 ) = 𝐾 |
| 117 | 116 | eleq2i | ⊢ ( 𝑣 ∈ ( Vtx ‘ 𝑆 ) ↔ 𝑣 ∈ 𝐾 ) |
| 118 | 3 | eleq2i | ⊢ ( 𝑣 ∈ 𝐾 ↔ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ) |
| 119 | 117 118 | sylbbr | ⊢ ( 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) → 𝑣 ∈ ( Vtx ‘ 𝑆 ) ) |
| 120 | eqid | ⊢ ( Vtx ‘ 𝑆 ) = ( Vtx ‘ 𝑆 ) | |
| 121 | eqid | ⊢ ( iEdg ‘ 𝑆 ) = ( iEdg ‘ 𝑆 ) | |
| 122 | eqid | ⊢ dom ( iEdg ‘ 𝑆 ) = dom ( iEdg ‘ 𝑆 ) | |
| 123 | 120 121 122 | vtxdgval | ⊢ ( 𝑣 ∈ ( Vtx ‘ 𝑆 ) → ( ( VtxDeg ‘ 𝑆 ) ‘ 𝑣 ) = ( ( ♯ ‘ { 𝑘 ∈ dom ( iEdg ‘ 𝑆 ) ∣ 𝑣 ∈ ( ( iEdg ‘ 𝑆 ) ‘ 𝑘 ) } ) +𝑒 ( ♯ ‘ { 𝑘 ∈ dom ( iEdg ‘ 𝑆 ) ∣ ( ( iEdg ‘ 𝑆 ) ‘ 𝑘 ) = { 𝑣 } } ) ) ) |
| 124 | 119 123 | syl | ⊢ ( 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) → ( ( VtxDeg ‘ 𝑆 ) ‘ 𝑣 ) = ( ( ♯ ‘ { 𝑘 ∈ dom ( iEdg ‘ 𝑆 ) ∣ 𝑣 ∈ ( ( iEdg ‘ 𝑆 ) ‘ 𝑘 ) } ) +𝑒 ( ♯ ‘ { 𝑘 ∈ dom ( iEdg ‘ 𝑆 ) ∣ ( ( iEdg ‘ 𝑆 ) ‘ 𝑘 ) = { 𝑣 } } ) ) ) |
| 125 | 124 | oveq1d | ⊢ ( 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) → ( ( ( VtxDeg ‘ 𝑆 ) ‘ 𝑣 ) +𝑒 ( ♯ ‘ { 𝑙 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑙 ) } ) ) = ( ( ( ♯ ‘ { 𝑘 ∈ dom ( iEdg ‘ 𝑆 ) ∣ 𝑣 ∈ ( ( iEdg ‘ 𝑆 ) ‘ 𝑘 ) } ) +𝑒 ( ♯ ‘ { 𝑘 ∈ dom ( iEdg ‘ 𝑆 ) ∣ ( ( iEdg ‘ 𝑆 ) ‘ 𝑘 ) = { 𝑣 } } ) ) +𝑒 ( ♯ ‘ { 𝑙 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑙 ) } ) ) ) |
| 126 | 102 106 125 | 3eqtr4d | ⊢ ( 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = ( ( ( VtxDeg ‘ 𝑆 ) ‘ 𝑣 ) +𝑒 ( ♯ ‘ { 𝑙 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑙 ) } ) ) ) |
| 127 | 126 | rgen | ⊢ ∀ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = ( ( ( VtxDeg ‘ 𝑆 ) ‘ 𝑣 ) +𝑒 ( ♯ ‘ { 𝑙 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑙 ) } ) ) |