This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The degree of a vertex. (Contributed by Mario Carneiro, 12-Mar-2015) (Revised by Alexander van der Vekens, 20-Dec-2017) (Revised by AV, 10-Dec-2020) (Revised by AV, 22-Mar-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | vtxdgval.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| vtxdgval.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | ||
| vtxdgval.a | ⊢ 𝐴 = dom 𝐼 | ||
| Assertion | vtxdgval | ⊢ ( 𝑈 ∈ 𝑉 → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 ) = ( ( ♯ ‘ { 𝑥 ∈ 𝐴 ∣ 𝑈 ∈ ( 𝐼 ‘ 𝑥 ) } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ 𝐴 ∣ ( 𝐼 ‘ 𝑥 ) = { 𝑈 } } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vtxdgval.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | vtxdgval.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| 3 | vtxdgval.a | ⊢ 𝐴 = dom 𝐼 | |
| 4 | 1 | 1vgrex | ⊢ ( 𝑈 ∈ 𝑉 → 𝐺 ∈ V ) |
| 5 | 1 2 3 | vtxdgfval | ⊢ ( 𝐺 ∈ V → ( VtxDeg ‘ 𝐺 ) = ( 𝑢 ∈ 𝑉 ↦ ( ( ♯ ‘ { 𝑥 ∈ 𝐴 ∣ 𝑢 ∈ ( 𝐼 ‘ 𝑥 ) } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ 𝐴 ∣ ( 𝐼 ‘ 𝑥 ) = { 𝑢 } } ) ) ) ) |
| 6 | 4 5 | syl | ⊢ ( 𝑈 ∈ 𝑉 → ( VtxDeg ‘ 𝐺 ) = ( 𝑢 ∈ 𝑉 ↦ ( ( ♯ ‘ { 𝑥 ∈ 𝐴 ∣ 𝑢 ∈ ( 𝐼 ‘ 𝑥 ) } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ 𝐴 ∣ ( 𝐼 ‘ 𝑥 ) = { 𝑢 } } ) ) ) ) |
| 7 | 6 | fveq1d | ⊢ ( 𝑈 ∈ 𝑉 → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 ) = ( ( 𝑢 ∈ 𝑉 ↦ ( ( ♯ ‘ { 𝑥 ∈ 𝐴 ∣ 𝑢 ∈ ( 𝐼 ‘ 𝑥 ) } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ 𝐴 ∣ ( 𝐼 ‘ 𝑥 ) = { 𝑢 } } ) ) ) ‘ 𝑈 ) ) |
| 8 | eleq1 | ⊢ ( 𝑢 = 𝑈 → ( 𝑢 ∈ ( 𝐼 ‘ 𝑥 ) ↔ 𝑈 ∈ ( 𝐼 ‘ 𝑥 ) ) ) | |
| 9 | 8 | rabbidv | ⊢ ( 𝑢 = 𝑈 → { 𝑥 ∈ 𝐴 ∣ 𝑢 ∈ ( 𝐼 ‘ 𝑥 ) } = { 𝑥 ∈ 𝐴 ∣ 𝑈 ∈ ( 𝐼 ‘ 𝑥 ) } ) |
| 10 | 9 | fveq2d | ⊢ ( 𝑢 = 𝑈 → ( ♯ ‘ { 𝑥 ∈ 𝐴 ∣ 𝑢 ∈ ( 𝐼 ‘ 𝑥 ) } ) = ( ♯ ‘ { 𝑥 ∈ 𝐴 ∣ 𝑈 ∈ ( 𝐼 ‘ 𝑥 ) } ) ) |
| 11 | sneq | ⊢ ( 𝑢 = 𝑈 → { 𝑢 } = { 𝑈 } ) | |
| 12 | 11 | eqeq2d | ⊢ ( 𝑢 = 𝑈 → ( ( 𝐼 ‘ 𝑥 ) = { 𝑢 } ↔ ( 𝐼 ‘ 𝑥 ) = { 𝑈 } ) ) |
| 13 | 12 | rabbidv | ⊢ ( 𝑢 = 𝑈 → { 𝑥 ∈ 𝐴 ∣ ( 𝐼 ‘ 𝑥 ) = { 𝑢 } } = { 𝑥 ∈ 𝐴 ∣ ( 𝐼 ‘ 𝑥 ) = { 𝑈 } } ) |
| 14 | 13 | fveq2d | ⊢ ( 𝑢 = 𝑈 → ( ♯ ‘ { 𝑥 ∈ 𝐴 ∣ ( 𝐼 ‘ 𝑥 ) = { 𝑢 } } ) = ( ♯ ‘ { 𝑥 ∈ 𝐴 ∣ ( 𝐼 ‘ 𝑥 ) = { 𝑈 } } ) ) |
| 15 | 10 14 | oveq12d | ⊢ ( 𝑢 = 𝑈 → ( ( ♯ ‘ { 𝑥 ∈ 𝐴 ∣ 𝑢 ∈ ( 𝐼 ‘ 𝑥 ) } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ 𝐴 ∣ ( 𝐼 ‘ 𝑥 ) = { 𝑢 } } ) ) = ( ( ♯ ‘ { 𝑥 ∈ 𝐴 ∣ 𝑈 ∈ ( 𝐼 ‘ 𝑥 ) } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ 𝐴 ∣ ( 𝐼 ‘ 𝑥 ) = { 𝑈 } } ) ) ) |
| 16 | eqid | ⊢ ( 𝑢 ∈ 𝑉 ↦ ( ( ♯ ‘ { 𝑥 ∈ 𝐴 ∣ 𝑢 ∈ ( 𝐼 ‘ 𝑥 ) } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ 𝐴 ∣ ( 𝐼 ‘ 𝑥 ) = { 𝑢 } } ) ) ) = ( 𝑢 ∈ 𝑉 ↦ ( ( ♯ ‘ { 𝑥 ∈ 𝐴 ∣ 𝑢 ∈ ( 𝐼 ‘ 𝑥 ) } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ 𝐴 ∣ ( 𝐼 ‘ 𝑥 ) = { 𝑢 } } ) ) ) | |
| 17 | ovex | ⊢ ( ( ♯ ‘ { 𝑥 ∈ 𝐴 ∣ 𝑈 ∈ ( 𝐼 ‘ 𝑥 ) } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ 𝐴 ∣ ( 𝐼 ‘ 𝑥 ) = { 𝑈 } } ) ) ∈ V | |
| 18 | 15 16 17 | fvmpt | ⊢ ( 𝑈 ∈ 𝑉 → ( ( 𝑢 ∈ 𝑉 ↦ ( ( ♯ ‘ { 𝑥 ∈ 𝐴 ∣ 𝑢 ∈ ( 𝐼 ‘ 𝑥 ) } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ 𝐴 ∣ ( 𝐼 ‘ 𝑥 ) = { 𝑢 } } ) ) ) ‘ 𝑈 ) = ( ( ♯ ‘ { 𝑥 ∈ 𝐴 ∣ 𝑈 ∈ ( 𝐼 ‘ 𝑥 ) } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ 𝐴 ∣ ( 𝐼 ‘ 𝑥 ) = { 𝑈 } } ) ) ) |
| 19 | 7 18 | eqtrd | ⊢ ( 𝑈 ∈ 𝑉 → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 ) = ( ( ♯ ‘ { 𝑥 ∈ 𝐴 ∣ 𝑈 ∈ ( 𝐼 ‘ 𝑥 ) } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ 𝐴 ∣ ( 𝐼 ‘ 𝑥 ) = { 𝑈 } } ) ) ) |