This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The extended nonnegative integers are closed under extended addition. (Contributed by AV, 10-Dec-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xnn0xaddcl | ⊢ ( ( 𝐴 ∈ ℕ0* ∧ 𝐵 ∈ ℕ0* ) → ( 𝐴 +𝑒 𝐵 ) ∈ ℕ0* ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0addcl | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) → ( 𝐴 + 𝐵 ) ∈ ℕ0 ) | |
| 2 | 1 | nn0xnn0d | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) → ( 𝐴 + 𝐵 ) ∈ ℕ0* ) |
| 3 | nn0re | ⊢ ( 𝐴 ∈ ℕ0 → 𝐴 ∈ ℝ ) | |
| 4 | nn0re | ⊢ ( 𝐵 ∈ ℕ0 → 𝐵 ∈ ℝ ) | |
| 5 | rexadd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 +𝑒 𝐵 ) = ( 𝐴 + 𝐵 ) ) | |
| 6 | 5 | eleq1d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐴 +𝑒 𝐵 ) ∈ ℕ0* ↔ ( 𝐴 + 𝐵 ) ∈ ℕ0* ) ) |
| 7 | 3 4 6 | syl2an | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) → ( ( 𝐴 +𝑒 𝐵 ) ∈ ℕ0* ↔ ( 𝐴 + 𝐵 ) ∈ ℕ0* ) ) |
| 8 | 2 7 | mpbird | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) → ( 𝐴 +𝑒 𝐵 ) ∈ ℕ0* ) |
| 9 | 8 | a1d | ⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) → ( ( 𝐴 ∈ ℕ0* ∧ 𝐵 ∈ ℕ0* ) → ( 𝐴 +𝑒 𝐵 ) ∈ ℕ0* ) ) |
| 10 | ianor | ⊢ ( ¬ ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) ↔ ( ¬ 𝐴 ∈ ℕ0 ∨ ¬ 𝐵 ∈ ℕ0 ) ) | |
| 11 | xnn0nnn0pnf | ⊢ ( ( 𝐴 ∈ ℕ0* ∧ ¬ 𝐴 ∈ ℕ0 ) → 𝐴 = +∞ ) | |
| 12 | oveq1 | ⊢ ( 𝐴 = +∞ → ( 𝐴 +𝑒 𝐵 ) = ( +∞ +𝑒 𝐵 ) ) | |
| 13 | xnn0xrnemnf | ⊢ ( 𝐵 ∈ ℕ0* → ( 𝐵 ∈ ℝ* ∧ 𝐵 ≠ -∞ ) ) | |
| 14 | xaddpnf2 | ⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝐵 ≠ -∞ ) → ( +∞ +𝑒 𝐵 ) = +∞ ) | |
| 15 | 13 14 | syl | ⊢ ( 𝐵 ∈ ℕ0* → ( +∞ +𝑒 𝐵 ) = +∞ ) |
| 16 | 12 15 | sylan9eq | ⊢ ( ( 𝐴 = +∞ ∧ 𝐵 ∈ ℕ0* ) → ( 𝐴 +𝑒 𝐵 ) = +∞ ) |
| 17 | 16 | ex | ⊢ ( 𝐴 = +∞ → ( 𝐵 ∈ ℕ0* → ( 𝐴 +𝑒 𝐵 ) = +∞ ) ) |
| 18 | 11 17 | syl | ⊢ ( ( 𝐴 ∈ ℕ0* ∧ ¬ 𝐴 ∈ ℕ0 ) → ( 𝐵 ∈ ℕ0* → ( 𝐴 +𝑒 𝐵 ) = +∞ ) ) |
| 19 | 18 | expcom | ⊢ ( ¬ 𝐴 ∈ ℕ0 → ( 𝐴 ∈ ℕ0* → ( 𝐵 ∈ ℕ0* → ( 𝐴 +𝑒 𝐵 ) = +∞ ) ) ) |
| 20 | 19 | impd | ⊢ ( ¬ 𝐴 ∈ ℕ0 → ( ( 𝐴 ∈ ℕ0* ∧ 𝐵 ∈ ℕ0* ) → ( 𝐴 +𝑒 𝐵 ) = +∞ ) ) |
| 21 | xnn0nnn0pnf | ⊢ ( ( 𝐵 ∈ ℕ0* ∧ ¬ 𝐵 ∈ ℕ0 ) → 𝐵 = +∞ ) | |
| 22 | oveq2 | ⊢ ( 𝐵 = +∞ → ( 𝐴 +𝑒 𝐵 ) = ( 𝐴 +𝑒 +∞ ) ) | |
| 23 | xnn0xrnemnf | ⊢ ( 𝐴 ∈ ℕ0* → ( 𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞ ) ) | |
| 24 | xaddpnf1 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞ ) → ( 𝐴 +𝑒 +∞ ) = +∞ ) | |
| 25 | 23 24 | syl | ⊢ ( 𝐴 ∈ ℕ0* → ( 𝐴 +𝑒 +∞ ) = +∞ ) |
| 26 | 22 25 | sylan9eq | ⊢ ( ( 𝐵 = +∞ ∧ 𝐴 ∈ ℕ0* ) → ( 𝐴 +𝑒 𝐵 ) = +∞ ) |
| 27 | 26 | ex | ⊢ ( 𝐵 = +∞ → ( 𝐴 ∈ ℕ0* → ( 𝐴 +𝑒 𝐵 ) = +∞ ) ) |
| 28 | 21 27 | syl | ⊢ ( ( 𝐵 ∈ ℕ0* ∧ ¬ 𝐵 ∈ ℕ0 ) → ( 𝐴 ∈ ℕ0* → ( 𝐴 +𝑒 𝐵 ) = +∞ ) ) |
| 29 | 28 | expcom | ⊢ ( ¬ 𝐵 ∈ ℕ0 → ( 𝐵 ∈ ℕ0* → ( 𝐴 ∈ ℕ0* → ( 𝐴 +𝑒 𝐵 ) = +∞ ) ) ) |
| 30 | 29 | impcomd | ⊢ ( ¬ 𝐵 ∈ ℕ0 → ( ( 𝐴 ∈ ℕ0* ∧ 𝐵 ∈ ℕ0* ) → ( 𝐴 +𝑒 𝐵 ) = +∞ ) ) |
| 31 | 20 30 | jaoi | ⊢ ( ( ¬ 𝐴 ∈ ℕ0 ∨ ¬ 𝐵 ∈ ℕ0 ) → ( ( 𝐴 ∈ ℕ0* ∧ 𝐵 ∈ ℕ0* ) → ( 𝐴 +𝑒 𝐵 ) = +∞ ) ) |
| 32 | 31 | imp | ⊢ ( ( ( ¬ 𝐴 ∈ ℕ0 ∨ ¬ 𝐵 ∈ ℕ0 ) ∧ ( 𝐴 ∈ ℕ0* ∧ 𝐵 ∈ ℕ0* ) ) → ( 𝐴 +𝑒 𝐵 ) = +∞ ) |
| 33 | pnf0xnn0 | ⊢ +∞ ∈ ℕ0* | |
| 34 | 32 33 | eqeltrdi | ⊢ ( ( ( ¬ 𝐴 ∈ ℕ0 ∨ ¬ 𝐵 ∈ ℕ0 ) ∧ ( 𝐴 ∈ ℕ0* ∧ 𝐵 ∈ ℕ0* ) ) → ( 𝐴 +𝑒 𝐵 ) ∈ ℕ0* ) |
| 35 | 34 | ex | ⊢ ( ( ¬ 𝐴 ∈ ℕ0 ∨ ¬ 𝐵 ∈ ℕ0 ) → ( ( 𝐴 ∈ ℕ0* ∧ 𝐵 ∈ ℕ0* ) → ( 𝐴 +𝑒 𝐵 ) ∈ ℕ0* ) ) |
| 36 | 10 35 | sylbi | ⊢ ( ¬ ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) → ( ( 𝐴 ∈ ℕ0* ∧ 𝐵 ∈ ℕ0* ) → ( 𝐴 +𝑒 𝐵 ) ∈ ℕ0* ) ) |
| 37 | 9 36 | pm2.61i | ⊢ ( ( 𝐴 ∈ ℕ0* ∧ 𝐵 ∈ ℕ0* ) → ( 𝐴 +𝑒 𝐵 ) ∈ ℕ0* ) |