This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The union of the set of elements s determining classes C (which may depend on s ) containing a special element and the set of elements s determining classes C not containing the special element yields the original set. (Contributed by Alexander van der Vekens, 11-Jan-2018) (Revised by AV, 9-Nov-2020) (Revised by AV, 17-Dec-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | elneldisj.e | ⊢ 𝐸 = { 𝑠 ∈ 𝐴 ∣ 𝐵 ∈ 𝐶 } | |
| elneldisj.n | ⊢ 𝑁 = { 𝑠 ∈ 𝐴 ∣ 𝐵 ∉ 𝐶 } | ||
| Assertion | elnelun | ⊢ ( 𝐸 ∪ 𝑁 ) = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elneldisj.e | ⊢ 𝐸 = { 𝑠 ∈ 𝐴 ∣ 𝐵 ∈ 𝐶 } | |
| 2 | elneldisj.n | ⊢ 𝑁 = { 𝑠 ∈ 𝐴 ∣ 𝐵 ∉ 𝐶 } | |
| 3 | df-nel | ⊢ ( 𝐵 ∉ 𝐶 ↔ ¬ 𝐵 ∈ 𝐶 ) | |
| 4 | 3 | rabbii | ⊢ { 𝑠 ∈ 𝐴 ∣ 𝐵 ∉ 𝐶 } = { 𝑠 ∈ 𝐴 ∣ ¬ 𝐵 ∈ 𝐶 } |
| 5 | 2 4 | eqtri | ⊢ 𝑁 = { 𝑠 ∈ 𝐴 ∣ ¬ 𝐵 ∈ 𝐶 } |
| 6 | 1 5 | uneq12i | ⊢ ( 𝐸 ∪ 𝑁 ) = ( { 𝑠 ∈ 𝐴 ∣ 𝐵 ∈ 𝐶 } ∪ { 𝑠 ∈ 𝐴 ∣ ¬ 𝐵 ∈ 𝐶 } ) |
| 7 | rabxm | ⊢ 𝐴 = ( { 𝑠 ∈ 𝐴 ∣ 𝐵 ∈ 𝐶 } ∪ { 𝑠 ∈ 𝐴 ∣ ¬ 𝐵 ∈ 𝐶 } ) | |
| 8 | 6 7 | eqtr4i | ⊢ ( 𝐸 ∪ 𝑁 ) = 𝐴 |