This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The size of the union of disjoint sets is the result of the extended real addition of their sizes, analogous to hashun . (Contributed by Alexander van der Vekens, 21-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hashunx | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( ♯ ‘ ( 𝐴 ∪ 𝐵 ) ) = ( ( ♯ ‘ 𝐴 ) +𝑒 ( ♯ ‘ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hashun | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( ♯ ‘ ( 𝐴 ∪ 𝐵 ) ) = ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) | |
| 2 | 1 | 3expa | ⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( ♯ ‘ ( 𝐴 ∪ 𝐵 ) ) = ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) |
| 3 | hashcl | ⊢ ( 𝐴 ∈ Fin → ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) | |
| 4 | 3 | nn0red | ⊢ ( 𝐴 ∈ Fin → ( ♯ ‘ 𝐴 ) ∈ ℝ ) |
| 5 | hashcl | ⊢ ( 𝐵 ∈ Fin → ( ♯ ‘ 𝐵 ) ∈ ℕ0 ) | |
| 6 | 5 | nn0red | ⊢ ( 𝐵 ∈ Fin → ( ♯ ‘ 𝐵 ) ∈ ℝ ) |
| 7 | 4 6 | anim12i | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ( ♯ ‘ 𝐴 ) ∈ ℝ ∧ ( ♯ ‘ 𝐵 ) ∈ ℝ ) ) |
| 8 | 7 | adantr | ⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( ( ♯ ‘ 𝐴 ) ∈ ℝ ∧ ( ♯ ‘ 𝐵 ) ∈ ℝ ) ) |
| 9 | rexadd | ⊢ ( ( ( ♯ ‘ 𝐴 ) ∈ ℝ ∧ ( ♯ ‘ 𝐵 ) ∈ ℝ ) → ( ( ♯ ‘ 𝐴 ) +𝑒 ( ♯ ‘ 𝐵 ) ) = ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) | |
| 10 | 8 9 | syl | ⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( ( ♯ ‘ 𝐴 ) +𝑒 ( ♯ ‘ 𝐵 ) ) = ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) |
| 11 | 10 | eqcomd | ⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) = ( ( ♯ ‘ 𝐴 ) +𝑒 ( ♯ ‘ 𝐵 ) ) ) |
| 12 | 2 11 | eqtrd | ⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( ♯ ‘ ( 𝐴 ∪ 𝐵 ) ) = ( ( ♯ ‘ 𝐴 ) +𝑒 ( ♯ ‘ 𝐵 ) ) ) |
| 13 | 12 | expcom | ⊢ ( ( 𝐴 ∩ 𝐵 ) = ∅ → ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ♯ ‘ ( 𝐴 ∪ 𝐵 ) ) = ( ( ♯ ‘ 𝐴 ) +𝑒 ( ♯ ‘ 𝐵 ) ) ) ) |
| 14 | 13 | 3ad2ant3 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ♯ ‘ ( 𝐴 ∪ 𝐵 ) ) = ( ( ♯ ‘ 𝐴 ) +𝑒 ( ♯ ‘ 𝐵 ) ) ) ) |
| 15 | unexg | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐴 ∪ 𝐵 ) ∈ V ) | |
| 16 | unfir | ⊢ ( ( 𝐴 ∪ 𝐵 ) ∈ Fin → ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) ) | |
| 17 | 16 | con3i | ⊢ ( ¬ ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ¬ ( 𝐴 ∪ 𝐵 ) ∈ Fin ) |
| 18 | hashinf | ⊢ ( ( ( 𝐴 ∪ 𝐵 ) ∈ V ∧ ¬ ( 𝐴 ∪ 𝐵 ) ∈ Fin ) → ( ♯ ‘ ( 𝐴 ∪ 𝐵 ) ) = +∞ ) | |
| 19 | 15 17 18 | syl2anr | ⊢ ( ( ¬ ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ) → ( ♯ ‘ ( 𝐴 ∪ 𝐵 ) ) = +∞ ) |
| 20 | ianor | ⊢ ( ¬ ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) ↔ ( ¬ 𝐴 ∈ Fin ∨ ¬ 𝐵 ∈ Fin ) ) | |
| 21 | simprl | ⊢ ( ( ¬ 𝐴 ∈ Fin ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ) → 𝐴 ∈ 𝑉 ) | |
| 22 | simprr | ⊢ ( ( ¬ 𝐴 ∈ Fin ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ) → 𝐵 ∈ 𝑊 ) | |
| 23 | hashnfinnn0 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin ) → ( ♯ ‘ 𝐴 ) ∉ ℕ0 ) | |
| 24 | 23 | ex | ⊢ ( 𝐴 ∈ 𝑉 → ( ¬ 𝐴 ∈ Fin → ( ♯ ‘ 𝐴 ) ∉ ℕ0 ) ) |
| 25 | 24 | adantr | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ¬ 𝐴 ∈ Fin → ( ♯ ‘ 𝐴 ) ∉ ℕ0 ) ) |
| 26 | 25 | impcom | ⊢ ( ( ¬ 𝐴 ∈ Fin ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ) → ( ♯ ‘ 𝐴 ) ∉ ℕ0 ) |
| 27 | hashinfxadd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ ( ♯ ‘ 𝐴 ) ∉ ℕ0 ) → ( ( ♯ ‘ 𝐴 ) +𝑒 ( ♯ ‘ 𝐵 ) ) = +∞ ) | |
| 28 | 21 22 26 27 | syl3anc | ⊢ ( ( ¬ 𝐴 ∈ Fin ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ) → ( ( ♯ ‘ 𝐴 ) +𝑒 ( ♯ ‘ 𝐵 ) ) = +∞ ) |
| 29 | 28 | eqcomd | ⊢ ( ( ¬ 𝐴 ∈ Fin ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ) → +∞ = ( ( ♯ ‘ 𝐴 ) +𝑒 ( ♯ ‘ 𝐵 ) ) ) |
| 30 | 29 | ex | ⊢ ( ¬ 𝐴 ∈ Fin → ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → +∞ = ( ( ♯ ‘ 𝐴 ) +𝑒 ( ♯ ‘ 𝐵 ) ) ) ) |
| 31 | hashxrcl | ⊢ ( 𝐴 ∈ 𝑉 → ( ♯ ‘ 𝐴 ) ∈ ℝ* ) | |
| 32 | hashxrcl | ⊢ ( 𝐵 ∈ 𝑊 → ( ♯ ‘ 𝐵 ) ∈ ℝ* ) | |
| 33 | 31 32 | anim12i | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ( ♯ ‘ 𝐴 ) ∈ ℝ* ∧ ( ♯ ‘ 𝐵 ) ∈ ℝ* ) ) |
| 34 | 33 | adantl | ⊢ ( ( ¬ 𝐵 ∈ Fin ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ) → ( ( ♯ ‘ 𝐴 ) ∈ ℝ* ∧ ( ♯ ‘ 𝐵 ) ∈ ℝ* ) ) |
| 35 | xaddcom | ⊢ ( ( ( ♯ ‘ 𝐴 ) ∈ ℝ* ∧ ( ♯ ‘ 𝐵 ) ∈ ℝ* ) → ( ( ♯ ‘ 𝐴 ) +𝑒 ( ♯ ‘ 𝐵 ) ) = ( ( ♯ ‘ 𝐵 ) +𝑒 ( ♯ ‘ 𝐴 ) ) ) | |
| 36 | 34 35 | syl | ⊢ ( ( ¬ 𝐵 ∈ Fin ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ) → ( ( ♯ ‘ 𝐴 ) +𝑒 ( ♯ ‘ 𝐵 ) ) = ( ( ♯ ‘ 𝐵 ) +𝑒 ( ♯ ‘ 𝐴 ) ) ) |
| 37 | simprr | ⊢ ( ( ¬ 𝐵 ∈ Fin ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ) → 𝐵 ∈ 𝑊 ) | |
| 38 | simprl | ⊢ ( ( ¬ 𝐵 ∈ Fin ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ) → 𝐴 ∈ 𝑉 ) | |
| 39 | hashnfinnn0 | ⊢ ( ( 𝐵 ∈ 𝑊 ∧ ¬ 𝐵 ∈ Fin ) → ( ♯ ‘ 𝐵 ) ∉ ℕ0 ) | |
| 40 | 39 | ex | ⊢ ( 𝐵 ∈ 𝑊 → ( ¬ 𝐵 ∈ Fin → ( ♯ ‘ 𝐵 ) ∉ ℕ0 ) ) |
| 41 | 40 | adantl | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ¬ 𝐵 ∈ Fin → ( ♯ ‘ 𝐵 ) ∉ ℕ0 ) ) |
| 42 | 41 | impcom | ⊢ ( ( ¬ 𝐵 ∈ Fin ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ) → ( ♯ ‘ 𝐵 ) ∉ ℕ0 ) |
| 43 | hashinfxadd | ⊢ ( ( 𝐵 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉 ∧ ( ♯ ‘ 𝐵 ) ∉ ℕ0 ) → ( ( ♯ ‘ 𝐵 ) +𝑒 ( ♯ ‘ 𝐴 ) ) = +∞ ) | |
| 44 | 37 38 42 43 | syl3anc | ⊢ ( ( ¬ 𝐵 ∈ Fin ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ) → ( ( ♯ ‘ 𝐵 ) +𝑒 ( ♯ ‘ 𝐴 ) ) = +∞ ) |
| 45 | 36 44 | eqtrd | ⊢ ( ( ¬ 𝐵 ∈ Fin ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ) → ( ( ♯ ‘ 𝐴 ) +𝑒 ( ♯ ‘ 𝐵 ) ) = +∞ ) |
| 46 | 45 | eqcomd | ⊢ ( ( ¬ 𝐵 ∈ Fin ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ) → +∞ = ( ( ♯ ‘ 𝐴 ) +𝑒 ( ♯ ‘ 𝐵 ) ) ) |
| 47 | 46 | ex | ⊢ ( ¬ 𝐵 ∈ Fin → ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → +∞ = ( ( ♯ ‘ 𝐴 ) +𝑒 ( ♯ ‘ 𝐵 ) ) ) ) |
| 48 | 30 47 | jaoi | ⊢ ( ( ¬ 𝐴 ∈ Fin ∨ ¬ 𝐵 ∈ Fin ) → ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → +∞ = ( ( ♯ ‘ 𝐴 ) +𝑒 ( ♯ ‘ 𝐵 ) ) ) ) |
| 49 | 20 48 | sylbi | ⊢ ( ¬ ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → +∞ = ( ( ♯ ‘ 𝐴 ) +𝑒 ( ♯ ‘ 𝐵 ) ) ) ) |
| 50 | 49 | imp | ⊢ ( ( ¬ ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ) → +∞ = ( ( ♯ ‘ 𝐴 ) +𝑒 ( ♯ ‘ 𝐵 ) ) ) |
| 51 | 19 50 | eqtrd | ⊢ ( ( ¬ ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ) → ( ♯ ‘ ( 𝐴 ∪ 𝐵 ) ) = ( ( ♯ ‘ 𝐴 ) +𝑒 ( ♯ ‘ 𝐵 ) ) ) |
| 52 | 51 | expcom | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ¬ ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ♯ ‘ ( 𝐴 ∪ 𝐵 ) ) = ( ( ♯ ‘ 𝐴 ) +𝑒 ( ♯ ‘ 𝐵 ) ) ) ) |
| 53 | 52 | 3adant3 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( ¬ ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ♯ ‘ ( 𝐴 ∪ 𝐵 ) ) = ( ( ♯ ‘ 𝐴 ) +𝑒 ( ♯ ‘ 𝐵 ) ) ) ) |
| 54 | 14 53 | pm2.61d | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( ♯ ‘ ( 𝐴 ∪ 𝐵 ) ) = ( ( ♯ ‘ 𝐴 ) +𝑒 ( ♯ ‘ 𝐵 ) ) ) |