This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Rearrangement of 4 terms in a sum for extended addition of extended nonnegative integers, analogous to xadd4d . (Contributed by AV, 12-Dec-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | xnn0add4d.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℕ0* ) | |
| xnn0add4d.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℕ0* ) | ||
| xnn0add4d.3 | ⊢ ( 𝜑 → 𝐶 ∈ ℕ0* ) | ||
| xnn0add4d.4 | ⊢ ( 𝜑 → 𝐷 ∈ ℕ0* ) | ||
| Assertion | xnn0add4d | ⊢ ( 𝜑 → ( ( 𝐴 +𝑒 𝐵 ) +𝑒 ( 𝐶 +𝑒 𝐷 ) ) = ( ( 𝐴 +𝑒 𝐶 ) +𝑒 ( 𝐵 +𝑒 𝐷 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xnn0add4d.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℕ0* ) | |
| 2 | xnn0add4d.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℕ0* ) | |
| 3 | xnn0add4d.3 | ⊢ ( 𝜑 → 𝐶 ∈ ℕ0* ) | |
| 4 | xnn0add4d.4 | ⊢ ( 𝜑 → 𝐷 ∈ ℕ0* ) | |
| 5 | xnn0xrnemnf | ⊢ ( 𝐴 ∈ ℕ0* → ( 𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞ ) ) | |
| 6 | 1 5 | syl | ⊢ ( 𝜑 → ( 𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞ ) ) |
| 7 | xnn0xrnemnf | ⊢ ( 𝐵 ∈ ℕ0* → ( 𝐵 ∈ ℝ* ∧ 𝐵 ≠ -∞ ) ) | |
| 8 | 2 7 | syl | ⊢ ( 𝜑 → ( 𝐵 ∈ ℝ* ∧ 𝐵 ≠ -∞ ) ) |
| 9 | xnn0xrnemnf | ⊢ ( 𝐶 ∈ ℕ0* → ( 𝐶 ∈ ℝ* ∧ 𝐶 ≠ -∞ ) ) | |
| 10 | 3 9 | syl | ⊢ ( 𝜑 → ( 𝐶 ∈ ℝ* ∧ 𝐶 ≠ -∞ ) ) |
| 11 | xnn0xrnemnf | ⊢ ( 𝐷 ∈ ℕ0* → ( 𝐷 ∈ ℝ* ∧ 𝐷 ≠ -∞ ) ) | |
| 12 | 4 11 | syl | ⊢ ( 𝜑 → ( 𝐷 ∈ ℝ* ∧ 𝐷 ≠ -∞ ) ) |
| 13 | 6 8 10 12 | xadd4d | ⊢ ( 𝜑 → ( ( 𝐴 +𝑒 𝐵 ) +𝑒 ( 𝐶 +𝑒 𝐷 ) ) = ( ( 𝐴 +𝑒 𝐶 ) +𝑒 ( 𝐵 +𝑒 𝐷 ) ) ) |