This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 4 for vtxdginducedm1 . (Contributed by AV, 17-Dec-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | vtxdginducedm1.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| vtxdginducedm1.e | ⊢ 𝐸 = ( iEdg ‘ 𝐺 ) | ||
| vtxdginducedm1.k | ⊢ 𝐾 = ( 𝑉 ∖ { 𝑁 } ) | ||
| vtxdginducedm1.i | ⊢ 𝐼 = { 𝑖 ∈ dom 𝐸 ∣ 𝑁 ∉ ( 𝐸 ‘ 𝑖 ) } | ||
| vtxdginducedm1.p | ⊢ 𝑃 = ( 𝐸 ↾ 𝐼 ) | ||
| vtxdginducedm1.s | ⊢ 𝑆 = 〈 𝐾 , 𝑃 〉 | ||
| vtxdginducedm1.j | ⊢ 𝐽 = { 𝑖 ∈ dom 𝐸 ∣ 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) } | ||
| Assertion | vtxdginducedm1lem4 | ⊢ ( 𝑊 ∈ ( 𝑉 ∖ { 𝑁 } ) → ( ♯ ‘ { 𝑘 ∈ 𝐽 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑊 } } ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vtxdginducedm1.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | vtxdginducedm1.e | ⊢ 𝐸 = ( iEdg ‘ 𝐺 ) | |
| 3 | vtxdginducedm1.k | ⊢ 𝐾 = ( 𝑉 ∖ { 𝑁 } ) | |
| 4 | vtxdginducedm1.i | ⊢ 𝐼 = { 𝑖 ∈ dom 𝐸 ∣ 𝑁 ∉ ( 𝐸 ‘ 𝑖 ) } | |
| 5 | vtxdginducedm1.p | ⊢ 𝑃 = ( 𝐸 ↾ 𝐼 ) | |
| 6 | vtxdginducedm1.s | ⊢ 𝑆 = 〈 𝐾 , 𝑃 〉 | |
| 7 | vtxdginducedm1.j | ⊢ 𝐽 = { 𝑖 ∈ dom 𝐸 ∣ 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) } | |
| 8 | fveq2 | ⊢ ( 𝑖 = 𝑘 → ( 𝐸 ‘ 𝑖 ) = ( 𝐸 ‘ 𝑘 ) ) | |
| 9 | 8 | eleq2d | ⊢ ( 𝑖 = 𝑘 → ( 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ↔ 𝑁 ∈ ( 𝐸 ‘ 𝑘 ) ) ) |
| 10 | 9 7 | elrab2 | ⊢ ( 𝑘 ∈ 𝐽 ↔ ( 𝑘 ∈ dom 𝐸 ∧ 𝑁 ∈ ( 𝐸 ‘ 𝑘 ) ) ) |
| 11 | eldifsn | ⊢ ( 𝑊 ∈ ( 𝑉 ∖ { 𝑁 } ) ↔ ( 𝑊 ∈ 𝑉 ∧ 𝑊 ≠ 𝑁 ) ) | |
| 12 | df-ne | ⊢ ( 𝑊 ≠ 𝑁 ↔ ¬ 𝑊 = 𝑁 ) | |
| 13 | eleq2 | ⊢ ( ( 𝐸 ‘ 𝑘 ) = { 𝑊 } → ( 𝑁 ∈ ( 𝐸 ‘ 𝑘 ) ↔ 𝑁 ∈ { 𝑊 } ) ) | |
| 14 | elsni | ⊢ ( 𝑁 ∈ { 𝑊 } → 𝑁 = 𝑊 ) | |
| 15 | 14 | eqcomd | ⊢ ( 𝑁 ∈ { 𝑊 } → 𝑊 = 𝑁 ) |
| 16 | 13 15 | biimtrdi | ⊢ ( ( 𝐸 ‘ 𝑘 ) = { 𝑊 } → ( 𝑁 ∈ ( 𝐸 ‘ 𝑘 ) → 𝑊 = 𝑁 ) ) |
| 17 | 16 | com12 | ⊢ ( 𝑁 ∈ ( 𝐸 ‘ 𝑘 ) → ( ( 𝐸 ‘ 𝑘 ) = { 𝑊 } → 𝑊 = 𝑁 ) ) |
| 18 | 17 | con3rr3 | ⊢ ( ¬ 𝑊 = 𝑁 → ( 𝑁 ∈ ( 𝐸 ‘ 𝑘 ) → ¬ ( 𝐸 ‘ 𝑘 ) = { 𝑊 } ) ) |
| 19 | 12 18 | sylbi | ⊢ ( 𝑊 ≠ 𝑁 → ( 𝑁 ∈ ( 𝐸 ‘ 𝑘 ) → ¬ ( 𝐸 ‘ 𝑘 ) = { 𝑊 } ) ) |
| 20 | 11 19 | simplbiim | ⊢ ( 𝑊 ∈ ( 𝑉 ∖ { 𝑁 } ) → ( 𝑁 ∈ ( 𝐸 ‘ 𝑘 ) → ¬ ( 𝐸 ‘ 𝑘 ) = { 𝑊 } ) ) |
| 21 | 20 | com12 | ⊢ ( 𝑁 ∈ ( 𝐸 ‘ 𝑘 ) → ( 𝑊 ∈ ( 𝑉 ∖ { 𝑁 } ) → ¬ ( 𝐸 ‘ 𝑘 ) = { 𝑊 } ) ) |
| 22 | 10 21 | simplbiim | ⊢ ( 𝑘 ∈ 𝐽 → ( 𝑊 ∈ ( 𝑉 ∖ { 𝑁 } ) → ¬ ( 𝐸 ‘ 𝑘 ) = { 𝑊 } ) ) |
| 23 | 22 | impcom | ⊢ ( ( 𝑊 ∈ ( 𝑉 ∖ { 𝑁 } ) ∧ 𝑘 ∈ 𝐽 ) → ¬ ( 𝐸 ‘ 𝑘 ) = { 𝑊 } ) |
| 24 | 23 | ralrimiva | ⊢ ( 𝑊 ∈ ( 𝑉 ∖ { 𝑁 } ) → ∀ 𝑘 ∈ 𝐽 ¬ ( 𝐸 ‘ 𝑘 ) = { 𝑊 } ) |
| 25 | rabeq0 | ⊢ ( { 𝑘 ∈ 𝐽 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑊 } } = ∅ ↔ ∀ 𝑘 ∈ 𝐽 ¬ ( 𝐸 ‘ 𝑘 ) = { 𝑊 } ) | |
| 26 | 24 25 | sylibr | ⊢ ( 𝑊 ∈ ( 𝑉 ∖ { 𝑁 } ) → { 𝑘 ∈ 𝐽 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑊 } } = ∅ ) |
| 27 | 2 | fvexi | ⊢ 𝐸 ∈ V |
| 28 | 27 | dmex | ⊢ dom 𝐸 ∈ V |
| 29 | 7 28 | rab2ex | ⊢ { 𝑘 ∈ 𝐽 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑊 } } ∈ V |
| 30 | hasheq0 | ⊢ ( { 𝑘 ∈ 𝐽 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑊 } } ∈ V → ( ( ♯ ‘ { 𝑘 ∈ 𝐽 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑊 } } ) = 0 ↔ { 𝑘 ∈ 𝐽 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑊 } } = ∅ ) ) | |
| 31 | 29 30 | ax-mp | ⊢ ( ( ♯ ‘ { 𝑘 ∈ 𝐽 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑊 } } ) = 0 ↔ { 𝑘 ∈ 𝐽 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑊 } } = ∅ ) |
| 32 | 26 31 | sylibr | ⊢ ( 𝑊 ∈ ( 𝑉 ∖ { 𝑁 } ) → ( ♯ ‘ { 𝑘 ∈ 𝐽 ∣ ( 𝐸 ‘ 𝑘 ) = { 𝑊 } } ) = 0 ) |