This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The degree of a vertex v in the induced subgraph S of a pseudograph G of finite size obtained by removing one vertex N plus the number of edges joining the vertex v and the vertex N is the degree of the vertex v in the pseudograph G . (Contributed by AV, 18-Dec-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | vtxdginducedm1.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| vtxdginducedm1.e | ⊢ 𝐸 = ( iEdg ‘ 𝐺 ) | ||
| vtxdginducedm1.k | ⊢ 𝐾 = ( 𝑉 ∖ { 𝑁 } ) | ||
| vtxdginducedm1.i | ⊢ 𝐼 = { 𝑖 ∈ dom 𝐸 ∣ 𝑁 ∉ ( 𝐸 ‘ 𝑖 ) } | ||
| vtxdginducedm1.p | ⊢ 𝑃 = ( 𝐸 ↾ 𝐼 ) | ||
| vtxdginducedm1.s | ⊢ 𝑆 = 〈 𝐾 , 𝑃 〉 | ||
| vtxdginducedm1.j | ⊢ 𝐽 = { 𝑖 ∈ dom 𝐸 ∣ 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) } | ||
| Assertion | vtxdginducedm1fi | ⊢ ( 𝐸 ∈ Fin → ∀ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = ( ( ( VtxDeg ‘ 𝑆 ) ‘ 𝑣 ) + ( ♯ ‘ { 𝑙 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑙 ) } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vtxdginducedm1.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | vtxdginducedm1.e | ⊢ 𝐸 = ( iEdg ‘ 𝐺 ) | |
| 3 | vtxdginducedm1.k | ⊢ 𝐾 = ( 𝑉 ∖ { 𝑁 } ) | |
| 4 | vtxdginducedm1.i | ⊢ 𝐼 = { 𝑖 ∈ dom 𝐸 ∣ 𝑁 ∉ ( 𝐸 ‘ 𝑖 ) } | |
| 5 | vtxdginducedm1.p | ⊢ 𝑃 = ( 𝐸 ↾ 𝐼 ) | |
| 6 | vtxdginducedm1.s | ⊢ 𝑆 = 〈 𝐾 , 𝑃 〉 | |
| 7 | vtxdginducedm1.j | ⊢ 𝐽 = { 𝑖 ∈ dom 𝐸 ∣ 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) } | |
| 8 | 1 2 3 4 5 6 7 | vtxdginducedm1 | ⊢ ∀ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = ( ( ( VtxDeg ‘ 𝑆 ) ‘ 𝑣 ) +𝑒 ( ♯ ‘ { 𝑙 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑙 ) } ) ) |
| 9 | 5 | dmeqi | ⊢ dom 𝑃 = dom ( 𝐸 ↾ 𝐼 ) |
| 10 | finresfin | ⊢ ( 𝐸 ∈ Fin → ( 𝐸 ↾ 𝐼 ) ∈ Fin ) | |
| 11 | dmfi | ⊢ ( ( 𝐸 ↾ 𝐼 ) ∈ Fin → dom ( 𝐸 ↾ 𝐼 ) ∈ Fin ) | |
| 12 | 10 11 | syl | ⊢ ( 𝐸 ∈ Fin → dom ( 𝐸 ↾ 𝐼 ) ∈ Fin ) |
| 13 | 9 12 | eqeltrid | ⊢ ( 𝐸 ∈ Fin → dom 𝑃 ∈ Fin ) |
| 14 | 6 | fveq2i | ⊢ ( Vtx ‘ 𝑆 ) = ( Vtx ‘ 〈 𝐾 , 𝑃 〉 ) |
| 15 | 1 | fvexi | ⊢ 𝑉 ∈ V |
| 16 | 15 | difexi | ⊢ ( 𝑉 ∖ { 𝑁 } ) ∈ V |
| 17 | 3 16 | eqeltri | ⊢ 𝐾 ∈ V |
| 18 | 2 | fvexi | ⊢ 𝐸 ∈ V |
| 19 | 18 | resex | ⊢ ( 𝐸 ↾ 𝐼 ) ∈ V |
| 20 | 5 19 | eqeltri | ⊢ 𝑃 ∈ V |
| 21 | 17 20 | opvtxfvi | ⊢ ( Vtx ‘ 〈 𝐾 , 𝑃 〉 ) = 𝐾 |
| 22 | 14 21 3 | 3eqtrri | ⊢ ( 𝑉 ∖ { 𝑁 } ) = ( Vtx ‘ 𝑆 ) |
| 23 | 1 2 3 4 5 6 | vtxdginducedm1lem1 | ⊢ ( iEdg ‘ 𝑆 ) = 𝑃 |
| 24 | 23 | eqcomi | ⊢ 𝑃 = ( iEdg ‘ 𝑆 ) |
| 25 | eqid | ⊢ dom 𝑃 = dom 𝑃 | |
| 26 | 22 24 25 | vtxdgfisnn0 | ⊢ ( ( dom 𝑃 ∈ Fin ∧ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ) → ( ( VtxDeg ‘ 𝑆 ) ‘ 𝑣 ) ∈ ℕ0 ) |
| 27 | 13 26 | sylan | ⊢ ( ( 𝐸 ∈ Fin ∧ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ) → ( ( VtxDeg ‘ 𝑆 ) ‘ 𝑣 ) ∈ ℕ0 ) |
| 28 | 27 | nn0red | ⊢ ( ( 𝐸 ∈ Fin ∧ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ) → ( ( VtxDeg ‘ 𝑆 ) ‘ 𝑣 ) ∈ ℝ ) |
| 29 | dmfi | ⊢ ( 𝐸 ∈ Fin → dom 𝐸 ∈ Fin ) | |
| 30 | rabfi | ⊢ ( dom 𝐸 ∈ Fin → { 𝑖 ∈ dom 𝐸 ∣ 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) } ∈ Fin ) | |
| 31 | 29 30 | syl | ⊢ ( 𝐸 ∈ Fin → { 𝑖 ∈ dom 𝐸 ∣ 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) } ∈ Fin ) |
| 32 | 7 31 | eqeltrid | ⊢ ( 𝐸 ∈ Fin → 𝐽 ∈ Fin ) |
| 33 | rabfi | ⊢ ( 𝐽 ∈ Fin → { 𝑙 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑙 ) } ∈ Fin ) | |
| 34 | hashcl | ⊢ ( { 𝑙 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑙 ) } ∈ Fin → ( ♯ ‘ { 𝑙 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑙 ) } ) ∈ ℕ0 ) | |
| 35 | 32 33 34 | 3syl | ⊢ ( 𝐸 ∈ Fin → ( ♯ ‘ { 𝑙 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑙 ) } ) ∈ ℕ0 ) |
| 36 | 35 | adantr | ⊢ ( ( 𝐸 ∈ Fin ∧ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ) → ( ♯ ‘ { 𝑙 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑙 ) } ) ∈ ℕ0 ) |
| 37 | 36 | nn0red | ⊢ ( ( 𝐸 ∈ Fin ∧ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ) → ( ♯ ‘ { 𝑙 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑙 ) } ) ∈ ℝ ) |
| 38 | 28 37 | rexaddd | ⊢ ( ( 𝐸 ∈ Fin ∧ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ) → ( ( ( VtxDeg ‘ 𝑆 ) ‘ 𝑣 ) +𝑒 ( ♯ ‘ { 𝑙 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑙 ) } ) ) = ( ( ( VtxDeg ‘ 𝑆 ) ‘ 𝑣 ) + ( ♯ ‘ { 𝑙 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑙 ) } ) ) ) |
| 39 | 38 | eqeq2d | ⊢ ( ( 𝐸 ∈ Fin ∧ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ) → ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = ( ( ( VtxDeg ‘ 𝑆 ) ‘ 𝑣 ) +𝑒 ( ♯ ‘ { 𝑙 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑙 ) } ) ) ↔ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = ( ( ( VtxDeg ‘ 𝑆 ) ‘ 𝑣 ) + ( ♯ ‘ { 𝑙 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑙 ) } ) ) ) ) |
| 40 | 39 | biimpd | ⊢ ( ( 𝐸 ∈ Fin ∧ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ) → ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = ( ( ( VtxDeg ‘ 𝑆 ) ‘ 𝑣 ) +𝑒 ( ♯ ‘ { 𝑙 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑙 ) } ) ) → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = ( ( ( VtxDeg ‘ 𝑆 ) ‘ 𝑣 ) + ( ♯ ‘ { 𝑙 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑙 ) } ) ) ) ) |
| 41 | 40 | ralimdva | ⊢ ( 𝐸 ∈ Fin → ( ∀ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = ( ( ( VtxDeg ‘ 𝑆 ) ‘ 𝑣 ) +𝑒 ( ♯ ‘ { 𝑙 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑙 ) } ) ) → ∀ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = ( ( ( VtxDeg ‘ 𝑆 ) ‘ 𝑣 ) + ( ♯ ‘ { 𝑙 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑙 ) } ) ) ) ) |
| 42 | 8 41 | mpi | ⊢ ( 𝐸 ∈ Fin → ∀ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = ( ( ( VtxDeg ‘ 𝑆 ) ‘ 𝑣 ) + ( ♯ ‘ { 𝑙 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑙 ) } ) ) ) |