This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Abstraction restricted to a union. (Contributed by Stefan O'Rear, 5-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rabun2 | ⊢ { 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) ∣ 𝜑 } = ( { 𝑥 ∈ 𝐴 ∣ 𝜑 } ∪ { 𝑥 ∈ 𝐵 ∣ 𝜑 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rab | ⊢ { 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) ∣ 𝜑 } = { 𝑥 ∣ ( 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) ∧ 𝜑 ) } | |
| 2 | df-rab | ⊢ { 𝑥 ∈ 𝐴 ∣ 𝜑 } = { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } | |
| 3 | df-rab | ⊢ { 𝑥 ∈ 𝐵 ∣ 𝜑 } = { 𝑥 ∣ ( 𝑥 ∈ 𝐵 ∧ 𝜑 ) } | |
| 4 | 2 3 | uneq12i | ⊢ ( { 𝑥 ∈ 𝐴 ∣ 𝜑 } ∪ { 𝑥 ∈ 𝐵 ∣ 𝜑 } ) = ( { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } ∪ { 𝑥 ∣ ( 𝑥 ∈ 𝐵 ∧ 𝜑 ) } ) |
| 5 | elun | ⊢ ( 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵 ) ) | |
| 6 | 5 | anbi1i | ⊢ ( ( 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) ∧ 𝜑 ) ↔ ( ( 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵 ) ∧ 𝜑 ) ) |
| 7 | andir | ⊢ ( ( ( 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵 ) ∧ 𝜑 ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ∨ ( 𝑥 ∈ 𝐵 ∧ 𝜑 ) ) ) | |
| 8 | 6 7 | bitri | ⊢ ( ( 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) ∧ 𝜑 ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ∨ ( 𝑥 ∈ 𝐵 ∧ 𝜑 ) ) ) |
| 9 | 8 | abbii | ⊢ { 𝑥 ∣ ( 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) ∧ 𝜑 ) } = { 𝑥 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ∨ ( 𝑥 ∈ 𝐵 ∧ 𝜑 ) ) } |
| 10 | unab | ⊢ ( { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } ∪ { 𝑥 ∣ ( 𝑥 ∈ 𝐵 ∧ 𝜑 ) } ) = { 𝑥 ∣ ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ∨ ( 𝑥 ∈ 𝐵 ∧ 𝜑 ) ) } | |
| 11 | 9 10 | eqtr4i | ⊢ { 𝑥 ∣ ( 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) ∧ 𝜑 ) } = ( { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } ∪ { 𝑥 ∣ ( 𝑥 ∈ 𝐵 ∧ 𝜑 ) } ) |
| 12 | 4 11 | eqtr4i | ⊢ ( { 𝑥 ∈ 𝐴 ∣ 𝜑 } ∪ { 𝑥 ∈ 𝐵 ∣ 𝜑 } ) = { 𝑥 ∣ ( 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) ∧ 𝜑 ) } |
| 13 | 1 12 | eqtr4i | ⊢ { 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) ∣ 𝜑 } = ( { 𝑥 ∈ 𝐴 ∣ 𝜑 } ∪ { 𝑥 ∈ 𝐵 ∣ 𝜑 } ) |