This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality theorem for restricted class abstractions. Inference form of rabeqf . (Contributed by Glauco Siliprandi, 26-Jun-2021) Avoid ax-10 , ax-11 , ax-12 . (Revised by GG, 3-Jun-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | rabeqi.1 | ⊢ 𝐴 = 𝐵 | |
| Assertion | rabeqi | ⊢ { 𝑥 ∈ 𝐴 ∣ 𝜑 } = { 𝑥 ∈ 𝐵 ∣ 𝜑 } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabeqi.1 | ⊢ 𝐴 = 𝐵 | |
| 2 | 1 | eleq2i | ⊢ ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵 ) |
| 3 | 2 | anbi1i | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝜑 ) ) |
| 4 | 3 | rabbia2 | ⊢ { 𝑥 ∈ 𝐴 ∣ 𝜑 } = { 𝑥 ∈ 𝐵 ∣ 𝜑 } |