This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Addition of non-disjoint sets. (Contributed by Mario Carneiro, 25-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | volinun | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ) ∧ ( ( vol ‘ 𝐴 ) ∈ ℝ ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ) → ( ( vol ‘ 𝐴 ) + ( vol ‘ 𝐵 ) ) = ( ( vol ‘ ( 𝐴 ∩ 𝐵 ) ) + ( vol ‘ ( 𝐴 ∪ 𝐵 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inundif | ⊢ ( ( 𝐴 ∩ 𝐵 ) ∪ ( 𝐴 ∖ 𝐵 ) ) = 𝐴 | |
| 2 | 1 | fveq2i | ⊢ ( vol ‘ ( ( 𝐴 ∩ 𝐵 ) ∪ ( 𝐴 ∖ 𝐵 ) ) ) = ( vol ‘ 𝐴 ) |
| 3 | inmbl | ⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ) → ( 𝐴 ∩ 𝐵 ) ∈ dom vol ) | |
| 4 | 3 | adantr | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ) ∧ ( ( vol ‘ 𝐴 ) ∈ ℝ ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ) → ( 𝐴 ∩ 𝐵 ) ∈ dom vol ) |
| 5 | difmbl | ⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ) → ( 𝐴 ∖ 𝐵 ) ∈ dom vol ) | |
| 6 | 5 | adantr | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ) ∧ ( ( vol ‘ 𝐴 ) ∈ ℝ ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ) → ( 𝐴 ∖ 𝐵 ) ∈ dom vol ) |
| 7 | indifcom | ⊢ ( ( 𝐴 ∩ 𝐵 ) ∩ ( 𝐴 ∖ 𝐵 ) ) = ( 𝐴 ∩ ( ( 𝐴 ∩ 𝐵 ) ∖ 𝐵 ) ) | |
| 8 | difin0 | ⊢ ( ( 𝐴 ∩ 𝐵 ) ∖ 𝐵 ) = ∅ | |
| 9 | 8 | ineq2i | ⊢ ( 𝐴 ∩ ( ( 𝐴 ∩ 𝐵 ) ∖ 𝐵 ) ) = ( 𝐴 ∩ ∅ ) |
| 10 | in0 | ⊢ ( 𝐴 ∩ ∅ ) = ∅ | |
| 11 | 9 10 | eqtri | ⊢ ( 𝐴 ∩ ( ( 𝐴 ∩ 𝐵 ) ∖ 𝐵 ) ) = ∅ |
| 12 | 7 11 | eqtri | ⊢ ( ( 𝐴 ∩ 𝐵 ) ∩ ( 𝐴 ∖ 𝐵 ) ) = ∅ |
| 13 | 12 | a1i | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ) ∧ ( ( vol ‘ 𝐴 ) ∈ ℝ ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ) → ( ( 𝐴 ∩ 𝐵 ) ∩ ( 𝐴 ∖ 𝐵 ) ) = ∅ ) |
| 14 | mblvol | ⊢ ( ( 𝐴 ∩ 𝐵 ) ∈ dom vol → ( vol ‘ ( 𝐴 ∩ 𝐵 ) ) = ( vol* ‘ ( 𝐴 ∩ 𝐵 ) ) ) | |
| 15 | 4 14 | syl | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ) ∧ ( ( vol ‘ 𝐴 ) ∈ ℝ ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ) → ( vol ‘ ( 𝐴 ∩ 𝐵 ) ) = ( vol* ‘ ( 𝐴 ∩ 𝐵 ) ) ) |
| 16 | inss1 | ⊢ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐴 | |
| 17 | 16 | a1i | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ) ∧ ( ( vol ‘ 𝐴 ) ∈ ℝ ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ) → ( 𝐴 ∩ 𝐵 ) ⊆ 𝐴 ) |
| 18 | mblss | ⊢ ( 𝐴 ∈ dom vol → 𝐴 ⊆ ℝ ) | |
| 19 | 18 | ad2antrr | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ) ∧ ( ( vol ‘ 𝐴 ) ∈ ℝ ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ) → 𝐴 ⊆ ℝ ) |
| 20 | mblvol | ⊢ ( 𝐴 ∈ dom vol → ( vol ‘ 𝐴 ) = ( vol* ‘ 𝐴 ) ) | |
| 21 | 20 | ad2antrr | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ) ∧ ( ( vol ‘ 𝐴 ) ∈ ℝ ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ) → ( vol ‘ 𝐴 ) = ( vol* ‘ 𝐴 ) ) |
| 22 | simprl | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ) ∧ ( ( vol ‘ 𝐴 ) ∈ ℝ ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ) → ( vol ‘ 𝐴 ) ∈ ℝ ) | |
| 23 | 21 22 | eqeltrrd | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ) ∧ ( ( vol ‘ 𝐴 ) ∈ ℝ ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ) → ( vol* ‘ 𝐴 ) ∈ ℝ ) |
| 24 | ovolsscl | ⊢ ( ( ( 𝐴 ∩ 𝐵 ) ⊆ 𝐴 ∧ 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) → ( vol* ‘ ( 𝐴 ∩ 𝐵 ) ) ∈ ℝ ) | |
| 25 | 17 19 23 24 | syl3anc | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ) ∧ ( ( vol ‘ 𝐴 ) ∈ ℝ ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ) → ( vol* ‘ ( 𝐴 ∩ 𝐵 ) ) ∈ ℝ ) |
| 26 | 15 25 | eqeltrd | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ) ∧ ( ( vol ‘ 𝐴 ) ∈ ℝ ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ) → ( vol ‘ ( 𝐴 ∩ 𝐵 ) ) ∈ ℝ ) |
| 27 | mblvol | ⊢ ( ( 𝐴 ∖ 𝐵 ) ∈ dom vol → ( vol ‘ ( 𝐴 ∖ 𝐵 ) ) = ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) | |
| 28 | 6 27 | syl | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ) ∧ ( ( vol ‘ 𝐴 ) ∈ ℝ ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ) → ( vol ‘ ( 𝐴 ∖ 𝐵 ) ) = ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ) |
| 29 | difssd | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ) ∧ ( ( vol ‘ 𝐴 ) ∈ ℝ ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ) → ( 𝐴 ∖ 𝐵 ) ⊆ 𝐴 ) | |
| 30 | ovolsscl | ⊢ ( ( ( 𝐴 ∖ 𝐵 ) ⊆ 𝐴 ∧ 𝐴 ⊆ ℝ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) → ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ∈ ℝ ) | |
| 31 | 29 19 23 30 | syl3anc | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ) ∧ ( ( vol ‘ 𝐴 ) ∈ ℝ ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ) → ( vol* ‘ ( 𝐴 ∖ 𝐵 ) ) ∈ ℝ ) |
| 32 | 28 31 | eqeltrd | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ) ∧ ( ( vol ‘ 𝐴 ) ∈ ℝ ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ) → ( vol ‘ ( 𝐴 ∖ 𝐵 ) ) ∈ ℝ ) |
| 33 | volun | ⊢ ( ( ( ( 𝐴 ∩ 𝐵 ) ∈ dom vol ∧ ( 𝐴 ∖ 𝐵 ) ∈ dom vol ∧ ( ( 𝐴 ∩ 𝐵 ) ∩ ( 𝐴 ∖ 𝐵 ) ) = ∅ ) ∧ ( ( vol ‘ ( 𝐴 ∩ 𝐵 ) ) ∈ ℝ ∧ ( vol ‘ ( 𝐴 ∖ 𝐵 ) ) ∈ ℝ ) ) → ( vol ‘ ( ( 𝐴 ∩ 𝐵 ) ∪ ( 𝐴 ∖ 𝐵 ) ) ) = ( ( vol ‘ ( 𝐴 ∩ 𝐵 ) ) + ( vol ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) | |
| 34 | 4 6 13 26 32 33 | syl32anc | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ) ∧ ( ( vol ‘ 𝐴 ) ∈ ℝ ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ) → ( vol ‘ ( ( 𝐴 ∩ 𝐵 ) ∪ ( 𝐴 ∖ 𝐵 ) ) ) = ( ( vol ‘ ( 𝐴 ∩ 𝐵 ) ) + ( vol ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) |
| 35 | 2 34 | eqtr3id | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ) ∧ ( ( vol ‘ 𝐴 ) ∈ ℝ ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ) → ( vol ‘ 𝐴 ) = ( ( vol ‘ ( 𝐴 ∩ 𝐵 ) ) + ( vol ‘ ( 𝐴 ∖ 𝐵 ) ) ) ) |
| 36 | 35 | oveq1d | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ) ∧ ( ( vol ‘ 𝐴 ) ∈ ℝ ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ) → ( ( vol ‘ 𝐴 ) + ( vol ‘ 𝐵 ) ) = ( ( ( vol ‘ ( 𝐴 ∩ 𝐵 ) ) + ( vol ‘ ( 𝐴 ∖ 𝐵 ) ) ) + ( vol ‘ 𝐵 ) ) ) |
| 37 | 26 | recnd | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ) ∧ ( ( vol ‘ 𝐴 ) ∈ ℝ ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ) → ( vol ‘ ( 𝐴 ∩ 𝐵 ) ) ∈ ℂ ) |
| 38 | 32 | recnd | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ) ∧ ( ( vol ‘ 𝐴 ) ∈ ℝ ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ) → ( vol ‘ ( 𝐴 ∖ 𝐵 ) ) ∈ ℂ ) |
| 39 | simprr | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ) ∧ ( ( vol ‘ 𝐴 ) ∈ ℝ ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ) → ( vol ‘ 𝐵 ) ∈ ℝ ) | |
| 40 | 39 | recnd | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ) ∧ ( ( vol ‘ 𝐴 ) ∈ ℝ ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ) → ( vol ‘ 𝐵 ) ∈ ℂ ) |
| 41 | 37 38 40 | addassd | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ) ∧ ( ( vol ‘ 𝐴 ) ∈ ℝ ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ) → ( ( ( vol ‘ ( 𝐴 ∩ 𝐵 ) ) + ( vol ‘ ( 𝐴 ∖ 𝐵 ) ) ) + ( vol ‘ 𝐵 ) ) = ( ( vol ‘ ( 𝐴 ∩ 𝐵 ) ) + ( ( vol ‘ ( 𝐴 ∖ 𝐵 ) ) + ( vol ‘ 𝐵 ) ) ) ) |
| 42 | simplr | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ) ∧ ( ( vol ‘ 𝐴 ) ∈ ℝ ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ) → 𝐵 ∈ dom vol ) | |
| 43 | disjdifr | ⊢ ( ( 𝐴 ∖ 𝐵 ) ∩ 𝐵 ) = ∅ | |
| 44 | 43 | a1i | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ) ∧ ( ( vol ‘ 𝐴 ) ∈ ℝ ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ) → ( ( 𝐴 ∖ 𝐵 ) ∩ 𝐵 ) = ∅ ) |
| 45 | volun | ⊢ ( ( ( ( 𝐴 ∖ 𝐵 ) ∈ dom vol ∧ 𝐵 ∈ dom vol ∧ ( ( 𝐴 ∖ 𝐵 ) ∩ 𝐵 ) = ∅ ) ∧ ( ( vol ‘ ( 𝐴 ∖ 𝐵 ) ) ∈ ℝ ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ) → ( vol ‘ ( ( 𝐴 ∖ 𝐵 ) ∪ 𝐵 ) ) = ( ( vol ‘ ( 𝐴 ∖ 𝐵 ) ) + ( vol ‘ 𝐵 ) ) ) | |
| 46 | 6 42 44 32 39 45 | syl32anc | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ) ∧ ( ( vol ‘ 𝐴 ) ∈ ℝ ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ) → ( vol ‘ ( ( 𝐴 ∖ 𝐵 ) ∪ 𝐵 ) ) = ( ( vol ‘ ( 𝐴 ∖ 𝐵 ) ) + ( vol ‘ 𝐵 ) ) ) |
| 47 | undif1 | ⊢ ( ( 𝐴 ∖ 𝐵 ) ∪ 𝐵 ) = ( 𝐴 ∪ 𝐵 ) | |
| 48 | 47 | fveq2i | ⊢ ( vol ‘ ( ( 𝐴 ∖ 𝐵 ) ∪ 𝐵 ) ) = ( vol ‘ ( 𝐴 ∪ 𝐵 ) ) |
| 49 | 46 48 | eqtr3di | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ) ∧ ( ( vol ‘ 𝐴 ) ∈ ℝ ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ) → ( ( vol ‘ ( 𝐴 ∖ 𝐵 ) ) + ( vol ‘ 𝐵 ) ) = ( vol ‘ ( 𝐴 ∪ 𝐵 ) ) ) |
| 50 | 49 | oveq2d | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ) ∧ ( ( vol ‘ 𝐴 ) ∈ ℝ ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ) → ( ( vol ‘ ( 𝐴 ∩ 𝐵 ) ) + ( ( vol ‘ ( 𝐴 ∖ 𝐵 ) ) + ( vol ‘ 𝐵 ) ) ) = ( ( vol ‘ ( 𝐴 ∩ 𝐵 ) ) + ( vol ‘ ( 𝐴 ∪ 𝐵 ) ) ) ) |
| 51 | 36 41 50 | 3eqtrd | ⊢ ( ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ) ∧ ( ( vol ‘ 𝐴 ) ∈ ℝ ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ) → ( ( vol ‘ 𝐴 ) + ( vol ‘ 𝐵 ) ) = ( ( vol ‘ ( 𝐴 ∩ 𝐵 ) ) + ( vol ‘ ( 𝐴 ∪ 𝐵 ) ) ) ) |