This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Lebesgue measure function is finitely additive. (Contributed by Mario Carneiro, 18-Mar-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | volun | |- ( ( ( A e. dom vol /\ B e. dom vol /\ ( A i^i B ) = (/) ) /\ ( ( vol ` A ) e. RR /\ ( vol ` B ) e. RR ) ) -> ( vol ` ( A u. B ) ) = ( ( vol ` A ) + ( vol ` B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl1 | |- ( ( ( A e. dom vol /\ B e. dom vol /\ ( A i^i B ) = (/) ) /\ ( ( vol* ` A ) e. RR /\ ( vol* ` B ) e. RR ) ) -> A e. dom vol ) |
|
| 2 | mblss | |- ( A e. dom vol -> A C_ RR ) |
|
| 3 | 1 2 | syl | |- ( ( ( A e. dom vol /\ B e. dom vol /\ ( A i^i B ) = (/) ) /\ ( ( vol* ` A ) e. RR /\ ( vol* ` B ) e. RR ) ) -> A C_ RR ) |
| 4 | simpl2 | |- ( ( ( A e. dom vol /\ B e. dom vol /\ ( A i^i B ) = (/) ) /\ ( ( vol* ` A ) e. RR /\ ( vol* ` B ) e. RR ) ) -> B e. dom vol ) |
|
| 5 | mblss | |- ( B e. dom vol -> B C_ RR ) |
|
| 6 | 4 5 | syl | |- ( ( ( A e. dom vol /\ B e. dom vol /\ ( A i^i B ) = (/) ) /\ ( ( vol* ` A ) e. RR /\ ( vol* ` B ) e. RR ) ) -> B C_ RR ) |
| 7 | 3 6 | unssd | |- ( ( ( A e. dom vol /\ B e. dom vol /\ ( A i^i B ) = (/) ) /\ ( ( vol* ` A ) e. RR /\ ( vol* ` B ) e. RR ) ) -> ( A u. B ) C_ RR ) |
| 8 | readdcl | |- ( ( ( vol* ` A ) e. RR /\ ( vol* ` B ) e. RR ) -> ( ( vol* ` A ) + ( vol* ` B ) ) e. RR ) |
|
| 9 | 8 | adantl | |- ( ( ( A e. dom vol /\ B e. dom vol /\ ( A i^i B ) = (/) ) /\ ( ( vol* ` A ) e. RR /\ ( vol* ` B ) e. RR ) ) -> ( ( vol* ` A ) + ( vol* ` B ) ) e. RR ) |
| 10 | simprl | |- ( ( ( A e. dom vol /\ B e. dom vol /\ ( A i^i B ) = (/) ) /\ ( ( vol* ` A ) e. RR /\ ( vol* ` B ) e. RR ) ) -> ( vol* ` A ) e. RR ) |
|
| 11 | simprr | |- ( ( ( A e. dom vol /\ B e. dom vol /\ ( A i^i B ) = (/) ) /\ ( ( vol* ` A ) e. RR /\ ( vol* ` B ) e. RR ) ) -> ( vol* ` B ) e. RR ) |
|
| 12 | ovolun | |- ( ( ( A C_ RR /\ ( vol* ` A ) e. RR ) /\ ( B C_ RR /\ ( vol* ` B ) e. RR ) ) -> ( vol* ` ( A u. B ) ) <_ ( ( vol* ` A ) + ( vol* ` B ) ) ) |
|
| 13 | 3 10 6 11 12 | syl22anc | |- ( ( ( A e. dom vol /\ B e. dom vol /\ ( A i^i B ) = (/) ) /\ ( ( vol* ` A ) e. RR /\ ( vol* ` B ) e. RR ) ) -> ( vol* ` ( A u. B ) ) <_ ( ( vol* ` A ) + ( vol* ` B ) ) ) |
| 14 | ovollecl | |- ( ( ( A u. B ) C_ RR /\ ( ( vol* ` A ) + ( vol* ` B ) ) e. RR /\ ( vol* ` ( A u. B ) ) <_ ( ( vol* ` A ) + ( vol* ` B ) ) ) -> ( vol* ` ( A u. B ) ) e. RR ) |
|
| 15 | 7 9 13 14 | syl3anc | |- ( ( ( A e. dom vol /\ B e. dom vol /\ ( A i^i B ) = (/) ) /\ ( ( vol* ` A ) e. RR /\ ( vol* ` B ) e. RR ) ) -> ( vol* ` ( A u. B ) ) e. RR ) |
| 16 | mblsplit | |- ( ( A e. dom vol /\ ( A u. B ) C_ RR /\ ( vol* ` ( A u. B ) ) e. RR ) -> ( vol* ` ( A u. B ) ) = ( ( vol* ` ( ( A u. B ) i^i A ) ) + ( vol* ` ( ( A u. B ) \ A ) ) ) ) |
|
| 17 | 1 7 15 16 | syl3anc | |- ( ( ( A e. dom vol /\ B e. dom vol /\ ( A i^i B ) = (/) ) /\ ( ( vol* ` A ) e. RR /\ ( vol* ` B ) e. RR ) ) -> ( vol* ` ( A u. B ) ) = ( ( vol* ` ( ( A u. B ) i^i A ) ) + ( vol* ` ( ( A u. B ) \ A ) ) ) ) |
| 18 | simpl3 | |- ( ( ( A e. dom vol /\ B e. dom vol /\ ( A i^i B ) = (/) ) /\ ( ( vol* ` A ) e. RR /\ ( vol* ` B ) e. RR ) ) -> ( A i^i B ) = (/) ) |
|
| 19 | indir | |- ( ( A u. B ) i^i A ) = ( ( A i^i A ) u. ( B i^i A ) ) |
|
| 20 | inidm | |- ( A i^i A ) = A |
|
| 21 | incom | |- ( B i^i A ) = ( A i^i B ) |
|
| 22 | 20 21 | uneq12i | |- ( ( A i^i A ) u. ( B i^i A ) ) = ( A u. ( A i^i B ) ) |
| 23 | unabs | |- ( A u. ( A i^i B ) ) = A |
|
| 24 | 22 23 | eqtri | |- ( ( A i^i A ) u. ( B i^i A ) ) = A |
| 25 | 19 24 | eqtri | |- ( ( A u. B ) i^i A ) = A |
| 26 | 25 | a1i | |- ( ( A i^i B ) = (/) -> ( ( A u. B ) i^i A ) = A ) |
| 27 | 26 | fveq2d | |- ( ( A i^i B ) = (/) -> ( vol* ` ( ( A u. B ) i^i A ) ) = ( vol* ` A ) ) |
| 28 | uncom | |- ( A u. B ) = ( B u. A ) |
|
| 29 | 28 | difeq1i | |- ( ( A u. B ) \ A ) = ( ( B u. A ) \ A ) |
| 30 | difun2 | |- ( ( B u. A ) \ A ) = ( B \ A ) |
|
| 31 | 29 30 | eqtri | |- ( ( A u. B ) \ A ) = ( B \ A ) |
| 32 | 21 | eqeq1i | |- ( ( B i^i A ) = (/) <-> ( A i^i B ) = (/) ) |
| 33 | disj3 | |- ( ( B i^i A ) = (/) <-> B = ( B \ A ) ) |
|
| 34 | 32 33 | sylbb1 | |- ( ( A i^i B ) = (/) -> B = ( B \ A ) ) |
| 35 | 31 34 | eqtr4id | |- ( ( A i^i B ) = (/) -> ( ( A u. B ) \ A ) = B ) |
| 36 | 35 | fveq2d | |- ( ( A i^i B ) = (/) -> ( vol* ` ( ( A u. B ) \ A ) ) = ( vol* ` B ) ) |
| 37 | 27 36 | oveq12d | |- ( ( A i^i B ) = (/) -> ( ( vol* ` ( ( A u. B ) i^i A ) ) + ( vol* ` ( ( A u. B ) \ A ) ) ) = ( ( vol* ` A ) + ( vol* ` B ) ) ) |
| 38 | 18 37 | syl | |- ( ( ( A e. dom vol /\ B e. dom vol /\ ( A i^i B ) = (/) ) /\ ( ( vol* ` A ) e. RR /\ ( vol* ` B ) e. RR ) ) -> ( ( vol* ` ( ( A u. B ) i^i A ) ) + ( vol* ` ( ( A u. B ) \ A ) ) ) = ( ( vol* ` A ) + ( vol* ` B ) ) ) |
| 39 | 17 38 | eqtrd | |- ( ( ( A e. dom vol /\ B e. dom vol /\ ( A i^i B ) = (/) ) /\ ( ( vol* ` A ) e. RR /\ ( vol* ` B ) e. RR ) ) -> ( vol* ` ( A u. B ) ) = ( ( vol* ` A ) + ( vol* ` B ) ) ) |
| 40 | 39 | ex | |- ( ( A e. dom vol /\ B e. dom vol /\ ( A i^i B ) = (/) ) -> ( ( ( vol* ` A ) e. RR /\ ( vol* ` B ) e. RR ) -> ( vol* ` ( A u. B ) ) = ( ( vol* ` A ) + ( vol* ` B ) ) ) ) |
| 41 | mblvol | |- ( A e. dom vol -> ( vol ` A ) = ( vol* ` A ) ) |
|
| 42 | 41 | eleq1d | |- ( A e. dom vol -> ( ( vol ` A ) e. RR <-> ( vol* ` A ) e. RR ) ) |
| 43 | mblvol | |- ( B e. dom vol -> ( vol ` B ) = ( vol* ` B ) ) |
|
| 44 | 43 | eleq1d | |- ( B e. dom vol -> ( ( vol ` B ) e. RR <-> ( vol* ` B ) e. RR ) ) |
| 45 | 42 44 | bi2anan9 | |- ( ( A e. dom vol /\ B e. dom vol ) -> ( ( ( vol ` A ) e. RR /\ ( vol ` B ) e. RR ) <-> ( ( vol* ` A ) e. RR /\ ( vol* ` B ) e. RR ) ) ) |
| 46 | 45 | 3adant3 | |- ( ( A e. dom vol /\ B e. dom vol /\ ( A i^i B ) = (/) ) -> ( ( ( vol ` A ) e. RR /\ ( vol ` B ) e. RR ) <-> ( ( vol* ` A ) e. RR /\ ( vol* ` B ) e. RR ) ) ) |
| 47 | unmbl | |- ( ( A e. dom vol /\ B e. dom vol ) -> ( A u. B ) e. dom vol ) |
|
| 48 | mblvol | |- ( ( A u. B ) e. dom vol -> ( vol ` ( A u. B ) ) = ( vol* ` ( A u. B ) ) ) |
|
| 49 | 47 48 | syl | |- ( ( A e. dom vol /\ B e. dom vol ) -> ( vol ` ( A u. B ) ) = ( vol* ` ( A u. B ) ) ) |
| 50 | 41 43 | oveqan12d | |- ( ( A e. dom vol /\ B e. dom vol ) -> ( ( vol ` A ) + ( vol ` B ) ) = ( ( vol* ` A ) + ( vol* ` B ) ) ) |
| 51 | 49 50 | eqeq12d | |- ( ( A e. dom vol /\ B e. dom vol ) -> ( ( vol ` ( A u. B ) ) = ( ( vol ` A ) + ( vol ` B ) ) <-> ( vol* ` ( A u. B ) ) = ( ( vol* ` A ) + ( vol* ` B ) ) ) ) |
| 52 | 51 | 3adant3 | |- ( ( A e. dom vol /\ B e. dom vol /\ ( A i^i B ) = (/) ) -> ( ( vol ` ( A u. B ) ) = ( ( vol ` A ) + ( vol ` B ) ) <-> ( vol* ` ( A u. B ) ) = ( ( vol* ` A ) + ( vol* ` B ) ) ) ) |
| 53 | 40 46 52 | 3imtr4d | |- ( ( A e. dom vol /\ B e. dom vol /\ ( A i^i B ) = (/) ) -> ( ( ( vol ` A ) e. RR /\ ( vol ` B ) e. RR ) -> ( vol ` ( A u. B ) ) = ( ( vol ` A ) + ( vol ` B ) ) ) ) |
| 54 | 53 | imp | |- ( ( ( A e. dom vol /\ B e. dom vol /\ ( A i^i B ) = (/) ) /\ ( ( vol ` A ) e. RR /\ ( vol ` B ) e. RR ) ) -> ( vol ` ( A u. B ) ) = ( ( vol ` A ) + ( vol ` B ) ) ) |