This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for voliun . (Contributed by Mario Carneiro, 20-Mar-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | voliunlem.3 | |- ( ph -> F : NN --> dom vol ) |
|
| voliunlem.5 | |- ( ph -> Disj_ i e. NN ( F ` i ) ) |
||
| voliunlem.6 | |- H = ( n e. NN |-> ( vol* ` ( x i^i ( F ` n ) ) ) ) |
||
| voliunlem3.1 | |- S = seq 1 ( + , G ) |
||
| voliunlem3.2 | |- G = ( n e. NN |-> ( vol ` ( F ` n ) ) ) |
||
| voliunlem3.4 | |- ( ph -> A. i e. NN ( vol ` ( F ` i ) ) e. RR ) |
||
| Assertion | voliunlem3 | |- ( ph -> ( vol ` U. ran F ) = sup ( ran S , RR* , < ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | voliunlem.3 | |- ( ph -> F : NN --> dom vol ) |
|
| 2 | voliunlem.5 | |- ( ph -> Disj_ i e. NN ( F ` i ) ) |
|
| 3 | voliunlem.6 | |- H = ( n e. NN |-> ( vol* ` ( x i^i ( F ` n ) ) ) ) |
|
| 4 | voliunlem3.1 | |- S = seq 1 ( + , G ) |
|
| 5 | voliunlem3.2 | |- G = ( n e. NN |-> ( vol ` ( F ` n ) ) ) |
|
| 6 | voliunlem3.4 | |- ( ph -> A. i e. NN ( vol ` ( F ` i ) ) e. RR ) |
|
| 7 | 1 2 3 | voliunlem2 | |- ( ph -> U. ran F e. dom vol ) |
| 8 | mblvol | |- ( U. ran F e. dom vol -> ( vol ` U. ran F ) = ( vol* ` U. ran F ) ) |
|
| 9 | 7 8 | syl | |- ( ph -> ( vol ` U. ran F ) = ( vol* ` U. ran F ) ) |
| 10 | 1 | frnd | |- ( ph -> ran F C_ dom vol ) |
| 11 | mblss | |- ( x e. dom vol -> x C_ RR ) |
|
| 12 | reex | |- RR e. _V |
|
| 13 | 12 | elpw2 | |- ( x e. ~P RR <-> x C_ RR ) |
| 14 | 11 13 | sylibr | |- ( x e. dom vol -> x e. ~P RR ) |
| 15 | 14 | ssriv | |- dom vol C_ ~P RR |
| 16 | 10 15 | sstrdi | |- ( ph -> ran F C_ ~P RR ) |
| 17 | sspwuni | |- ( ran F C_ ~P RR <-> U. ran F C_ RR ) |
|
| 18 | 16 17 | sylib | |- ( ph -> U. ran F C_ RR ) |
| 19 | ovolcl | |- ( U. ran F C_ RR -> ( vol* ` U. ran F ) e. RR* ) |
|
| 20 | 18 19 | syl | |- ( ph -> ( vol* ` U. ran F ) e. RR* ) |
| 21 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 22 | 1zzd | |- ( ph -> 1 e. ZZ ) |
|
| 23 | 2fveq3 | |- ( n = k -> ( vol ` ( F ` n ) ) = ( vol ` ( F ` k ) ) ) |
|
| 24 | fvex | |- ( vol ` ( F ` k ) ) e. _V |
|
| 25 | 23 5 24 | fvmpt | |- ( k e. NN -> ( G ` k ) = ( vol ` ( F ` k ) ) ) |
| 26 | 25 | adantl | |- ( ( ph /\ k e. NN ) -> ( G ` k ) = ( vol ` ( F ` k ) ) ) |
| 27 | 2fveq3 | |- ( i = k -> ( vol ` ( F ` i ) ) = ( vol ` ( F ` k ) ) ) |
|
| 28 | 27 | eleq1d | |- ( i = k -> ( ( vol ` ( F ` i ) ) e. RR <-> ( vol ` ( F ` k ) ) e. RR ) ) |
| 29 | 28 | rspccva | |- ( ( A. i e. NN ( vol ` ( F ` i ) ) e. RR /\ k e. NN ) -> ( vol ` ( F ` k ) ) e. RR ) |
| 30 | 6 29 | sylan | |- ( ( ph /\ k e. NN ) -> ( vol ` ( F ` k ) ) e. RR ) |
| 31 | 26 30 | eqeltrd | |- ( ( ph /\ k e. NN ) -> ( G ` k ) e. RR ) |
| 32 | 21 22 31 | serfre | |- ( ph -> seq 1 ( + , G ) : NN --> RR ) |
| 33 | 4 | feq1i | |- ( S : NN --> RR <-> seq 1 ( + , G ) : NN --> RR ) |
| 34 | 32 33 | sylibr | |- ( ph -> S : NN --> RR ) |
| 35 | 34 | frnd | |- ( ph -> ran S C_ RR ) |
| 36 | ressxr | |- RR C_ RR* |
|
| 37 | 35 36 | sstrdi | |- ( ph -> ran S C_ RR* ) |
| 38 | supxrcl | |- ( ran S C_ RR* -> sup ( ran S , RR* , < ) e. RR* ) |
|
| 39 | 37 38 | syl | |- ( ph -> sup ( ran S , RR* , < ) e. RR* ) |
| 40 | eqid | |- seq 1 ( + , ( n e. NN |-> ( vol* ` ( F ` n ) ) ) ) = seq 1 ( + , ( n e. NN |-> ( vol* ` ( F ` n ) ) ) ) |
|
| 41 | eqid | |- ( n e. NN |-> ( vol* ` ( F ` n ) ) ) = ( n e. NN |-> ( vol* ` ( F ` n ) ) ) |
|
| 42 | 1 | ffvelcdmda | |- ( ( ph /\ n e. NN ) -> ( F ` n ) e. dom vol ) |
| 43 | mblss | |- ( ( F ` n ) e. dom vol -> ( F ` n ) C_ RR ) |
|
| 44 | 42 43 | syl | |- ( ( ph /\ n e. NN ) -> ( F ` n ) C_ RR ) |
| 45 | mblvol | |- ( ( F ` n ) e. dom vol -> ( vol ` ( F ` n ) ) = ( vol* ` ( F ` n ) ) ) |
|
| 46 | 42 45 | syl | |- ( ( ph /\ n e. NN ) -> ( vol ` ( F ` n ) ) = ( vol* ` ( F ` n ) ) ) |
| 47 | 2fveq3 | |- ( i = n -> ( vol ` ( F ` i ) ) = ( vol ` ( F ` n ) ) ) |
|
| 48 | 47 | eleq1d | |- ( i = n -> ( ( vol ` ( F ` i ) ) e. RR <-> ( vol ` ( F ` n ) ) e. RR ) ) |
| 49 | 48 | rspccva | |- ( ( A. i e. NN ( vol ` ( F ` i ) ) e. RR /\ n e. NN ) -> ( vol ` ( F ` n ) ) e. RR ) |
| 50 | 6 49 | sylan | |- ( ( ph /\ n e. NN ) -> ( vol ` ( F ` n ) ) e. RR ) |
| 51 | 46 50 | eqeltrrd | |- ( ( ph /\ n e. NN ) -> ( vol* ` ( F ` n ) ) e. RR ) |
| 52 | 40 41 44 51 | ovoliun | |- ( ph -> ( vol* ` U_ n e. NN ( F ` n ) ) <_ sup ( ran seq 1 ( + , ( n e. NN |-> ( vol* ` ( F ` n ) ) ) ) , RR* , < ) ) |
| 53 | 1 | ffnd | |- ( ph -> F Fn NN ) |
| 54 | fniunfv | |- ( F Fn NN -> U_ n e. NN ( F ` n ) = U. ran F ) |
|
| 55 | 53 54 | syl | |- ( ph -> U_ n e. NN ( F ` n ) = U. ran F ) |
| 56 | 55 | fveq2d | |- ( ph -> ( vol* ` U_ n e. NN ( F ` n ) ) = ( vol* ` U. ran F ) ) |
| 57 | 46 | mpteq2dva | |- ( ph -> ( n e. NN |-> ( vol ` ( F ` n ) ) ) = ( n e. NN |-> ( vol* ` ( F ` n ) ) ) ) |
| 58 | 5 57 | eqtrid | |- ( ph -> G = ( n e. NN |-> ( vol* ` ( F ` n ) ) ) ) |
| 59 | 58 | seqeq3d | |- ( ph -> seq 1 ( + , G ) = seq 1 ( + , ( n e. NN |-> ( vol* ` ( F ` n ) ) ) ) ) |
| 60 | 4 59 | eqtr2id | |- ( ph -> seq 1 ( + , ( n e. NN |-> ( vol* ` ( F ` n ) ) ) ) = S ) |
| 61 | 60 | rneqd | |- ( ph -> ran seq 1 ( + , ( n e. NN |-> ( vol* ` ( F ` n ) ) ) ) = ran S ) |
| 62 | 61 | supeq1d | |- ( ph -> sup ( ran seq 1 ( + , ( n e. NN |-> ( vol* ` ( F ` n ) ) ) ) , RR* , < ) = sup ( ran S , RR* , < ) ) |
| 63 | 52 56 62 | 3brtr3d | |- ( ph -> ( vol* ` U. ran F ) <_ sup ( ran S , RR* , < ) ) |
| 64 | ovolge0 | |- ( U. ran F C_ RR -> 0 <_ ( vol* ` U. ran F ) ) |
|
| 65 | 18 64 | syl | |- ( ph -> 0 <_ ( vol* ` U. ran F ) ) |
| 66 | mnflt0 | |- -oo < 0 |
|
| 67 | mnfxr | |- -oo e. RR* |
|
| 68 | 0xr | |- 0 e. RR* |
|
| 69 | xrltletr | |- ( ( -oo e. RR* /\ 0 e. RR* /\ ( vol* ` U. ran F ) e. RR* ) -> ( ( -oo < 0 /\ 0 <_ ( vol* ` U. ran F ) ) -> -oo < ( vol* ` U. ran F ) ) ) |
|
| 70 | 67 68 69 | mp3an12 | |- ( ( vol* ` U. ran F ) e. RR* -> ( ( -oo < 0 /\ 0 <_ ( vol* ` U. ran F ) ) -> -oo < ( vol* ` U. ran F ) ) ) |
| 71 | 66 70 | mpani | |- ( ( vol* ` U. ran F ) e. RR* -> ( 0 <_ ( vol* ` U. ran F ) -> -oo < ( vol* ` U. ran F ) ) ) |
| 72 | 20 65 71 | sylc | |- ( ph -> -oo < ( vol* ` U. ran F ) ) |
| 73 | xrrebnd | |- ( ( vol* ` U. ran F ) e. RR* -> ( ( vol* ` U. ran F ) e. RR <-> ( -oo < ( vol* ` U. ran F ) /\ ( vol* ` U. ran F ) < +oo ) ) ) |
|
| 74 | 20 73 | syl | |- ( ph -> ( ( vol* ` U. ran F ) e. RR <-> ( -oo < ( vol* ` U. ran F ) /\ ( vol* ` U. ran F ) < +oo ) ) ) |
| 75 | 12 | elpw2 | |- ( U. ran F e. ~P RR <-> U. ran F C_ RR ) |
| 76 | 18 75 | sylibr | |- ( ph -> U. ran F e. ~P RR ) |
| 77 | simpl | |- ( ( x = U. ran F /\ ph ) -> x = U. ran F ) |
|
| 78 | 77 | sseq1d | |- ( ( x = U. ran F /\ ph ) -> ( x C_ RR <-> U. ran F C_ RR ) ) |
| 79 | 77 | fveq2d | |- ( ( x = U. ran F /\ ph ) -> ( vol* ` x ) = ( vol* ` U. ran F ) ) |
| 80 | 79 | eleq1d | |- ( ( x = U. ran F /\ ph ) -> ( ( vol* ` x ) e. RR <-> ( vol* ` U. ran F ) e. RR ) ) |
| 81 | simpll | |- ( ( ( x = U. ran F /\ ph ) /\ n e. NN ) -> x = U. ran F ) |
|
| 82 | 81 | ineq1d | |- ( ( ( x = U. ran F /\ ph ) /\ n e. NN ) -> ( x i^i ( F ` n ) ) = ( U. ran F i^i ( F ` n ) ) ) |
| 83 | fnfvelrn | |- ( ( F Fn NN /\ n e. NN ) -> ( F ` n ) e. ran F ) |
|
| 84 | 53 83 | sylan | |- ( ( ph /\ n e. NN ) -> ( F ` n ) e. ran F ) |
| 85 | elssuni | |- ( ( F ` n ) e. ran F -> ( F ` n ) C_ U. ran F ) |
|
| 86 | 84 85 | syl | |- ( ( ph /\ n e. NN ) -> ( F ` n ) C_ U. ran F ) |
| 87 | 86 | adantll | |- ( ( ( x = U. ran F /\ ph ) /\ n e. NN ) -> ( F ` n ) C_ U. ran F ) |
| 88 | sseqin2 | |- ( ( F ` n ) C_ U. ran F <-> ( U. ran F i^i ( F ` n ) ) = ( F ` n ) ) |
|
| 89 | 87 88 | sylib | |- ( ( ( x = U. ran F /\ ph ) /\ n e. NN ) -> ( U. ran F i^i ( F ` n ) ) = ( F ` n ) ) |
| 90 | 82 89 | eqtrd | |- ( ( ( x = U. ran F /\ ph ) /\ n e. NN ) -> ( x i^i ( F ` n ) ) = ( F ` n ) ) |
| 91 | 90 | fveq2d | |- ( ( ( x = U. ran F /\ ph ) /\ n e. NN ) -> ( vol* ` ( x i^i ( F ` n ) ) ) = ( vol* ` ( F ` n ) ) ) |
| 92 | 46 | adantll | |- ( ( ( x = U. ran F /\ ph ) /\ n e. NN ) -> ( vol ` ( F ` n ) ) = ( vol* ` ( F ` n ) ) ) |
| 93 | 91 92 | eqtr4d | |- ( ( ( x = U. ran F /\ ph ) /\ n e. NN ) -> ( vol* ` ( x i^i ( F ` n ) ) ) = ( vol ` ( F ` n ) ) ) |
| 94 | 93 | mpteq2dva | |- ( ( x = U. ran F /\ ph ) -> ( n e. NN |-> ( vol* ` ( x i^i ( F ` n ) ) ) ) = ( n e. NN |-> ( vol ` ( F ` n ) ) ) ) |
| 95 | 94 | adantrr | |- ( ( x = U. ran F /\ ( ph /\ k e. NN ) ) -> ( n e. NN |-> ( vol* ` ( x i^i ( F ` n ) ) ) ) = ( n e. NN |-> ( vol ` ( F ` n ) ) ) ) |
| 96 | 95 3 5 | 3eqtr4g | |- ( ( x = U. ran F /\ ( ph /\ k e. NN ) ) -> H = G ) |
| 97 | 96 | seqeq3d | |- ( ( x = U. ran F /\ ( ph /\ k e. NN ) ) -> seq 1 ( + , H ) = seq 1 ( + , G ) ) |
| 98 | 97 4 | eqtr4di | |- ( ( x = U. ran F /\ ( ph /\ k e. NN ) ) -> seq 1 ( + , H ) = S ) |
| 99 | 98 | fveq1d | |- ( ( x = U. ran F /\ ( ph /\ k e. NN ) ) -> ( seq 1 ( + , H ) ` k ) = ( S ` k ) ) |
| 100 | difeq1 | |- ( x = U. ran F -> ( x \ U. ran F ) = ( U. ran F \ U. ran F ) ) |
|
| 101 | difid | |- ( U. ran F \ U. ran F ) = (/) |
|
| 102 | 100 101 | eqtrdi | |- ( x = U. ran F -> ( x \ U. ran F ) = (/) ) |
| 103 | 102 | fveq2d | |- ( x = U. ran F -> ( vol* ` ( x \ U. ran F ) ) = ( vol* ` (/) ) ) |
| 104 | ovol0 | |- ( vol* ` (/) ) = 0 |
|
| 105 | 103 104 | eqtrdi | |- ( x = U. ran F -> ( vol* ` ( x \ U. ran F ) ) = 0 ) |
| 106 | 105 | adantr | |- ( ( x = U. ran F /\ ( ph /\ k e. NN ) ) -> ( vol* ` ( x \ U. ran F ) ) = 0 ) |
| 107 | 99 106 | oveq12d | |- ( ( x = U. ran F /\ ( ph /\ k e. NN ) ) -> ( ( seq 1 ( + , H ) ` k ) + ( vol* ` ( x \ U. ran F ) ) ) = ( ( S ` k ) + 0 ) ) |
| 108 | 34 | ffvelcdmda | |- ( ( ph /\ k e. NN ) -> ( S ` k ) e. RR ) |
| 109 | 108 | adantl | |- ( ( x = U. ran F /\ ( ph /\ k e. NN ) ) -> ( S ` k ) e. RR ) |
| 110 | 109 | recnd | |- ( ( x = U. ran F /\ ( ph /\ k e. NN ) ) -> ( S ` k ) e. CC ) |
| 111 | 110 | addridd | |- ( ( x = U. ran F /\ ( ph /\ k e. NN ) ) -> ( ( S ` k ) + 0 ) = ( S ` k ) ) |
| 112 | 107 111 | eqtrd | |- ( ( x = U. ran F /\ ( ph /\ k e. NN ) ) -> ( ( seq 1 ( + , H ) ` k ) + ( vol* ` ( x \ U. ran F ) ) ) = ( S ` k ) ) |
| 113 | fveq2 | |- ( x = U. ran F -> ( vol* ` x ) = ( vol* ` U. ran F ) ) |
|
| 114 | 113 | adantr | |- ( ( x = U. ran F /\ ( ph /\ k e. NN ) ) -> ( vol* ` x ) = ( vol* ` U. ran F ) ) |
| 115 | 112 114 | breq12d | |- ( ( x = U. ran F /\ ( ph /\ k e. NN ) ) -> ( ( ( seq 1 ( + , H ) ` k ) + ( vol* ` ( x \ U. ran F ) ) ) <_ ( vol* ` x ) <-> ( S ` k ) <_ ( vol* ` U. ran F ) ) ) |
| 116 | 115 | expr | |- ( ( x = U. ran F /\ ph ) -> ( k e. NN -> ( ( ( seq 1 ( + , H ) ` k ) + ( vol* ` ( x \ U. ran F ) ) ) <_ ( vol* ` x ) <-> ( S ` k ) <_ ( vol* ` U. ran F ) ) ) ) |
| 117 | 116 | pm5.74d | |- ( ( x = U. ran F /\ ph ) -> ( ( k e. NN -> ( ( seq 1 ( + , H ) ` k ) + ( vol* ` ( x \ U. ran F ) ) ) <_ ( vol* ` x ) ) <-> ( k e. NN -> ( S ` k ) <_ ( vol* ` U. ran F ) ) ) ) |
| 118 | 80 117 | imbi12d | |- ( ( x = U. ran F /\ ph ) -> ( ( ( vol* ` x ) e. RR -> ( k e. NN -> ( ( seq 1 ( + , H ) ` k ) + ( vol* ` ( x \ U. ran F ) ) ) <_ ( vol* ` x ) ) ) <-> ( ( vol* ` U. ran F ) e. RR -> ( k e. NN -> ( S ` k ) <_ ( vol* ` U. ran F ) ) ) ) ) |
| 119 | 78 118 | imbi12d | |- ( ( x = U. ran F /\ ph ) -> ( ( x C_ RR -> ( ( vol* ` x ) e. RR -> ( k e. NN -> ( ( seq 1 ( + , H ) ` k ) + ( vol* ` ( x \ U. ran F ) ) ) <_ ( vol* ` x ) ) ) ) <-> ( U. ran F C_ RR -> ( ( vol* ` U. ran F ) e. RR -> ( k e. NN -> ( S ` k ) <_ ( vol* ` U. ran F ) ) ) ) ) ) |
| 120 | 119 | pm5.74da | |- ( x = U. ran F -> ( ( ph -> ( x C_ RR -> ( ( vol* ` x ) e. RR -> ( k e. NN -> ( ( seq 1 ( + , H ) ` k ) + ( vol* ` ( x \ U. ran F ) ) ) <_ ( vol* ` x ) ) ) ) ) <-> ( ph -> ( U. ran F C_ RR -> ( ( vol* ` U. ran F ) e. RR -> ( k e. NN -> ( S ` k ) <_ ( vol* ` U. ran F ) ) ) ) ) ) ) |
| 121 | 1 | 3ad2ant1 | |- ( ( ph /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> F : NN --> dom vol ) |
| 122 | 2 | 3ad2ant1 | |- ( ( ph /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> Disj_ i e. NN ( F ` i ) ) |
| 123 | simp2 | |- ( ( ph /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> x C_ RR ) |
|
| 124 | simp3 | |- ( ( ph /\ x C_ RR /\ ( vol* ` x ) e. RR ) -> ( vol* ` x ) e. RR ) |
|
| 125 | 121 122 3 123 124 | voliunlem1 | |- ( ( ( ph /\ x C_ RR /\ ( vol* ` x ) e. RR ) /\ k e. NN ) -> ( ( seq 1 ( + , H ) ` k ) + ( vol* ` ( x \ U. ran F ) ) ) <_ ( vol* ` x ) ) |
| 126 | 125 | 3exp1 | |- ( ph -> ( x C_ RR -> ( ( vol* ` x ) e. RR -> ( k e. NN -> ( ( seq 1 ( + , H ) ` k ) + ( vol* ` ( x \ U. ran F ) ) ) <_ ( vol* ` x ) ) ) ) ) |
| 127 | 120 126 | vtoclg | |- ( U. ran F e. ~P RR -> ( ph -> ( U. ran F C_ RR -> ( ( vol* ` U. ran F ) e. RR -> ( k e. NN -> ( S ` k ) <_ ( vol* ` U. ran F ) ) ) ) ) ) |
| 128 | 76 127 | mpcom | |- ( ph -> ( U. ran F C_ RR -> ( ( vol* ` U. ran F ) e. RR -> ( k e. NN -> ( S ` k ) <_ ( vol* ` U. ran F ) ) ) ) ) |
| 129 | 18 128 | mpd | |- ( ph -> ( ( vol* ` U. ran F ) e. RR -> ( k e. NN -> ( S ` k ) <_ ( vol* ` U. ran F ) ) ) ) |
| 130 | 74 129 | sylbird | |- ( ph -> ( ( -oo < ( vol* ` U. ran F ) /\ ( vol* ` U. ran F ) < +oo ) -> ( k e. NN -> ( S ` k ) <_ ( vol* ` U. ran F ) ) ) ) |
| 131 | 72 130 | mpand | |- ( ph -> ( ( vol* ` U. ran F ) < +oo -> ( k e. NN -> ( S ` k ) <_ ( vol* ` U. ran F ) ) ) ) |
| 132 | nltpnft | |- ( ( vol* ` U. ran F ) e. RR* -> ( ( vol* ` U. ran F ) = +oo <-> -. ( vol* ` U. ran F ) < +oo ) ) |
|
| 133 | 20 132 | syl | |- ( ph -> ( ( vol* ` U. ran F ) = +oo <-> -. ( vol* ` U. ran F ) < +oo ) ) |
| 134 | rexr | |- ( ( S ` k ) e. RR -> ( S ` k ) e. RR* ) |
|
| 135 | pnfge | |- ( ( S ` k ) e. RR* -> ( S ` k ) <_ +oo ) |
|
| 136 | 108 134 135 | 3syl | |- ( ( ph /\ k e. NN ) -> ( S ` k ) <_ +oo ) |
| 137 | 136 | ex | |- ( ph -> ( k e. NN -> ( S ` k ) <_ +oo ) ) |
| 138 | breq2 | |- ( ( vol* ` U. ran F ) = +oo -> ( ( S ` k ) <_ ( vol* ` U. ran F ) <-> ( S ` k ) <_ +oo ) ) |
|
| 139 | 138 | imbi2d | |- ( ( vol* ` U. ran F ) = +oo -> ( ( k e. NN -> ( S ` k ) <_ ( vol* ` U. ran F ) ) <-> ( k e. NN -> ( S ` k ) <_ +oo ) ) ) |
| 140 | 137 139 | syl5ibrcom | |- ( ph -> ( ( vol* ` U. ran F ) = +oo -> ( k e. NN -> ( S ` k ) <_ ( vol* ` U. ran F ) ) ) ) |
| 141 | 133 140 | sylbird | |- ( ph -> ( -. ( vol* ` U. ran F ) < +oo -> ( k e. NN -> ( S ` k ) <_ ( vol* ` U. ran F ) ) ) ) |
| 142 | 131 141 | pm2.61d | |- ( ph -> ( k e. NN -> ( S ` k ) <_ ( vol* ` U. ran F ) ) ) |
| 143 | 142 | ralrimiv | |- ( ph -> A. k e. NN ( S ` k ) <_ ( vol* ` U. ran F ) ) |
| 144 | 34 | ffnd | |- ( ph -> S Fn NN ) |
| 145 | breq1 | |- ( z = ( S ` k ) -> ( z <_ ( vol* ` U. ran F ) <-> ( S ` k ) <_ ( vol* ` U. ran F ) ) ) |
|
| 146 | 145 | ralrn | |- ( S Fn NN -> ( A. z e. ran S z <_ ( vol* ` U. ran F ) <-> A. k e. NN ( S ` k ) <_ ( vol* ` U. ran F ) ) ) |
| 147 | 144 146 | syl | |- ( ph -> ( A. z e. ran S z <_ ( vol* ` U. ran F ) <-> A. k e. NN ( S ` k ) <_ ( vol* ` U. ran F ) ) ) |
| 148 | 143 147 | mpbird | |- ( ph -> A. z e. ran S z <_ ( vol* ` U. ran F ) ) |
| 149 | supxrleub | |- ( ( ran S C_ RR* /\ ( vol* ` U. ran F ) e. RR* ) -> ( sup ( ran S , RR* , < ) <_ ( vol* ` U. ran F ) <-> A. z e. ran S z <_ ( vol* ` U. ran F ) ) ) |
|
| 150 | 37 20 149 | syl2anc | |- ( ph -> ( sup ( ran S , RR* , < ) <_ ( vol* ` U. ran F ) <-> A. z e. ran S z <_ ( vol* ` U. ran F ) ) ) |
| 151 | 148 150 | mpbird | |- ( ph -> sup ( ran S , RR* , < ) <_ ( vol* ` U. ran F ) ) |
| 152 | 20 39 63 151 | xrletrid | |- ( ph -> ( vol* ` U. ran F ) = sup ( ran S , RR* , < ) ) |
| 153 | 9 152 | eqtrd | |- ( ph -> ( vol ` U. ran F ) = sup ( ran S , RR* , < ) ) |