This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Successor value of a recursive definition generator on upper integers. See comment in om2uzrdg . (Contributed by Mario Carneiro, 26-Jun-2013) (Revised by Mario Carneiro, 13-Sep-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | om2uz.1 | ⊢ 𝐶 ∈ ℤ | |
| om2uz.2 | ⊢ 𝐺 = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 𝐶 ) ↾ ω ) | ||
| uzrdg.1 | ⊢ 𝐴 ∈ V | ||
| uzrdg.2 | ⊢ 𝑅 = ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑥 𝐹 𝑦 ) 〉 ) , 〈 𝐶 , 𝐴 〉 ) ↾ ω ) | ||
| uzrdg.3 | ⊢ 𝑆 = ran 𝑅 | ||
| Assertion | uzrdgsuci | ⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐶 ) → ( 𝑆 ‘ ( 𝐵 + 1 ) ) = ( 𝐵 𝐹 ( 𝑆 ‘ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | om2uz.1 | ⊢ 𝐶 ∈ ℤ | |
| 2 | om2uz.2 | ⊢ 𝐺 = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 𝐶 ) ↾ ω ) | |
| 3 | uzrdg.1 | ⊢ 𝐴 ∈ V | |
| 4 | uzrdg.2 | ⊢ 𝑅 = ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑥 𝐹 𝑦 ) 〉 ) , 〈 𝐶 , 𝐴 〉 ) ↾ ω ) | |
| 5 | uzrdg.3 | ⊢ 𝑆 = ran 𝑅 | |
| 6 | 1 2 3 4 5 | uzrdgfni | ⊢ 𝑆 Fn ( ℤ≥ ‘ 𝐶 ) |
| 7 | fnfun | ⊢ ( 𝑆 Fn ( ℤ≥ ‘ 𝐶 ) → Fun 𝑆 ) | |
| 8 | 6 7 | ax-mp | ⊢ Fun 𝑆 |
| 9 | peano2uz | ⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐶 ) → ( 𝐵 + 1 ) ∈ ( ℤ≥ ‘ 𝐶 ) ) | |
| 10 | 1 2 3 4 | uzrdglem | ⊢ ( ( 𝐵 + 1 ) ∈ ( ℤ≥ ‘ 𝐶 ) → 〈 ( 𝐵 + 1 ) , ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ ( 𝐵 + 1 ) ) ) ) 〉 ∈ ran 𝑅 ) |
| 11 | 9 10 | syl | ⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐶 ) → 〈 ( 𝐵 + 1 ) , ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ ( 𝐵 + 1 ) ) ) ) 〉 ∈ ran 𝑅 ) |
| 12 | 11 5 | eleqtrrdi | ⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐶 ) → 〈 ( 𝐵 + 1 ) , ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ ( 𝐵 + 1 ) ) ) ) 〉 ∈ 𝑆 ) |
| 13 | funopfv | ⊢ ( Fun 𝑆 → ( 〈 ( 𝐵 + 1 ) , ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ ( 𝐵 + 1 ) ) ) ) 〉 ∈ 𝑆 → ( 𝑆 ‘ ( 𝐵 + 1 ) ) = ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ ( 𝐵 + 1 ) ) ) ) ) ) | |
| 14 | 8 12 13 | mpsyl | ⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐶 ) → ( 𝑆 ‘ ( 𝐵 + 1 ) ) = ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ ( 𝐵 + 1 ) ) ) ) ) |
| 15 | 1 2 | om2uzf1oi | ⊢ 𝐺 : ω –1-1-onto→ ( ℤ≥ ‘ 𝐶 ) |
| 16 | f1ocnvdm | ⊢ ( ( 𝐺 : ω –1-1-onto→ ( ℤ≥ ‘ 𝐶 ) ∧ 𝐵 ∈ ( ℤ≥ ‘ 𝐶 ) ) → ( ◡ 𝐺 ‘ 𝐵 ) ∈ ω ) | |
| 17 | 15 16 | mpan | ⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐶 ) → ( ◡ 𝐺 ‘ 𝐵 ) ∈ ω ) |
| 18 | peano2 | ⊢ ( ( ◡ 𝐺 ‘ 𝐵 ) ∈ ω → suc ( ◡ 𝐺 ‘ 𝐵 ) ∈ ω ) | |
| 19 | 17 18 | syl | ⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐶 ) → suc ( ◡ 𝐺 ‘ 𝐵 ) ∈ ω ) |
| 20 | 1 2 | om2uzsuci | ⊢ ( ( ◡ 𝐺 ‘ 𝐵 ) ∈ ω → ( 𝐺 ‘ suc ( ◡ 𝐺 ‘ 𝐵 ) ) = ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) + 1 ) ) |
| 21 | 17 20 | syl | ⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐶 ) → ( 𝐺 ‘ suc ( ◡ 𝐺 ‘ 𝐵 ) ) = ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) + 1 ) ) |
| 22 | f1ocnvfv2 | ⊢ ( ( 𝐺 : ω –1-1-onto→ ( ℤ≥ ‘ 𝐶 ) ∧ 𝐵 ∈ ( ℤ≥ ‘ 𝐶 ) ) → ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) = 𝐵 ) | |
| 23 | 15 22 | mpan | ⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐶 ) → ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) = 𝐵 ) |
| 24 | 23 | oveq1d | ⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐶 ) → ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) + 1 ) = ( 𝐵 + 1 ) ) |
| 25 | 21 24 | eqtrd | ⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐶 ) → ( 𝐺 ‘ suc ( ◡ 𝐺 ‘ 𝐵 ) ) = ( 𝐵 + 1 ) ) |
| 26 | f1ocnvfv | ⊢ ( ( 𝐺 : ω –1-1-onto→ ( ℤ≥ ‘ 𝐶 ) ∧ suc ( ◡ 𝐺 ‘ 𝐵 ) ∈ ω ) → ( ( 𝐺 ‘ suc ( ◡ 𝐺 ‘ 𝐵 ) ) = ( 𝐵 + 1 ) → ( ◡ 𝐺 ‘ ( 𝐵 + 1 ) ) = suc ( ◡ 𝐺 ‘ 𝐵 ) ) ) | |
| 27 | 15 26 | mpan | ⊢ ( suc ( ◡ 𝐺 ‘ 𝐵 ) ∈ ω → ( ( 𝐺 ‘ suc ( ◡ 𝐺 ‘ 𝐵 ) ) = ( 𝐵 + 1 ) → ( ◡ 𝐺 ‘ ( 𝐵 + 1 ) ) = suc ( ◡ 𝐺 ‘ 𝐵 ) ) ) |
| 28 | 19 25 27 | sylc | ⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐶 ) → ( ◡ 𝐺 ‘ ( 𝐵 + 1 ) ) = suc ( ◡ 𝐺 ‘ 𝐵 ) ) |
| 29 | 28 | fveq2d | ⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐶 ) → ( 𝑅 ‘ ( ◡ 𝐺 ‘ ( 𝐵 + 1 ) ) ) = ( 𝑅 ‘ suc ( ◡ 𝐺 ‘ 𝐵 ) ) ) |
| 30 | 29 | fveq2d | ⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐶 ) → ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ ( 𝐵 + 1 ) ) ) ) = ( 2nd ‘ ( 𝑅 ‘ suc ( ◡ 𝐺 ‘ 𝐵 ) ) ) ) |
| 31 | 14 30 | eqtrd | ⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐶 ) → ( 𝑆 ‘ ( 𝐵 + 1 ) ) = ( 2nd ‘ ( 𝑅 ‘ suc ( ◡ 𝐺 ‘ 𝐵 ) ) ) ) |
| 32 | frsuc | ⊢ ( ( ◡ 𝐺 ‘ 𝐵 ) ∈ ω → ( ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑥 𝐹 𝑦 ) 〉 ) , 〈 𝐶 , 𝐴 〉 ) ↾ ω ) ‘ suc ( ◡ 𝐺 ‘ 𝐵 ) ) = ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑥 𝐹 𝑦 ) 〉 ) ‘ ( ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑥 𝐹 𝑦 ) 〉 ) , 〈 𝐶 , 𝐴 〉 ) ↾ ω ) ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) ) | |
| 33 | 4 | fveq1i | ⊢ ( 𝑅 ‘ suc ( ◡ 𝐺 ‘ 𝐵 ) ) = ( ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑥 𝐹 𝑦 ) 〉 ) , 〈 𝐶 , 𝐴 〉 ) ↾ ω ) ‘ suc ( ◡ 𝐺 ‘ 𝐵 ) ) |
| 34 | 4 | fveq1i | ⊢ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) = ( ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑥 𝐹 𝑦 ) 〉 ) , 〈 𝐶 , 𝐴 〉 ) ↾ ω ) ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) |
| 35 | 34 | fveq2i | ⊢ ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑥 𝐹 𝑦 ) 〉 ) ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) = ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑥 𝐹 𝑦 ) 〉 ) ‘ ( ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑥 𝐹 𝑦 ) 〉 ) , 〈 𝐶 , 𝐴 〉 ) ↾ ω ) ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) |
| 36 | 32 33 35 | 3eqtr4g | ⊢ ( ( ◡ 𝐺 ‘ 𝐵 ) ∈ ω → ( 𝑅 ‘ suc ( ◡ 𝐺 ‘ 𝐵 ) ) = ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑥 𝐹 𝑦 ) 〉 ) ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) ) |
| 37 | 1 2 3 4 | om2uzrdg | ⊢ ( ( ◡ 𝐺 ‘ 𝐵 ) ∈ ω → ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) = 〈 ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) , ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) 〉 ) |
| 38 | 37 | fveq2d | ⊢ ( ( ◡ 𝐺 ‘ 𝐵 ) ∈ ω → ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑥 𝐹 𝑦 ) 〉 ) ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) = ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑥 𝐹 𝑦 ) 〉 ) ‘ 〈 ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) , ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) 〉 ) ) |
| 39 | df-ov | ⊢ ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑥 𝐹 𝑦 ) 〉 ) ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) ) = ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑥 𝐹 𝑦 ) 〉 ) ‘ 〈 ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) , ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) 〉 ) | |
| 40 | 38 39 | eqtr4di | ⊢ ( ( ◡ 𝐺 ‘ 𝐵 ) ∈ ω → ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑥 𝐹 𝑦 ) 〉 ) ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) = ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑥 𝐹 𝑦 ) 〉 ) ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) ) ) |
| 41 | 36 40 | eqtrd | ⊢ ( ( ◡ 𝐺 ‘ 𝐵 ) ∈ ω → ( 𝑅 ‘ suc ( ◡ 𝐺 ‘ 𝐵 ) ) = ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑥 𝐹 𝑦 ) 〉 ) ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) ) ) |
| 42 | fvex | ⊢ ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ∈ V | |
| 43 | fvex | ⊢ ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) ∈ V | |
| 44 | oveq1 | ⊢ ( 𝑧 = ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) → ( 𝑧 + 1 ) = ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) + 1 ) ) | |
| 45 | oveq1 | ⊢ ( 𝑧 = ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) → ( 𝑧 𝐹 𝑤 ) = ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) 𝐹 𝑤 ) ) | |
| 46 | 44 45 | opeq12d | ⊢ ( 𝑧 = ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) → 〈 ( 𝑧 + 1 ) , ( 𝑧 𝐹 𝑤 ) 〉 = 〈 ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) + 1 ) , ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) 𝐹 𝑤 ) 〉 ) |
| 47 | oveq2 | ⊢ ( 𝑤 = ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) → ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) 𝐹 𝑤 ) = ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) 𝐹 ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) ) ) | |
| 48 | 47 | opeq2d | ⊢ ( 𝑤 = ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) → 〈 ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) + 1 ) , ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) 𝐹 𝑤 ) 〉 = 〈 ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) + 1 ) , ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) 𝐹 ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) ) 〉 ) |
| 49 | oveq1 | ⊢ ( 𝑥 = 𝑧 → ( 𝑥 + 1 ) = ( 𝑧 + 1 ) ) | |
| 50 | oveq1 | ⊢ ( 𝑥 = 𝑧 → ( 𝑥 𝐹 𝑦 ) = ( 𝑧 𝐹 𝑦 ) ) | |
| 51 | 49 50 | opeq12d | ⊢ ( 𝑥 = 𝑧 → 〈 ( 𝑥 + 1 ) , ( 𝑥 𝐹 𝑦 ) 〉 = 〈 ( 𝑧 + 1 ) , ( 𝑧 𝐹 𝑦 ) 〉 ) |
| 52 | oveq2 | ⊢ ( 𝑦 = 𝑤 → ( 𝑧 𝐹 𝑦 ) = ( 𝑧 𝐹 𝑤 ) ) | |
| 53 | 52 | opeq2d | ⊢ ( 𝑦 = 𝑤 → 〈 ( 𝑧 + 1 ) , ( 𝑧 𝐹 𝑦 ) 〉 = 〈 ( 𝑧 + 1 ) , ( 𝑧 𝐹 𝑤 ) 〉 ) |
| 54 | 51 53 | cbvmpov | ⊢ ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑥 𝐹 𝑦 ) 〉 ) = ( 𝑧 ∈ V , 𝑤 ∈ V ↦ 〈 ( 𝑧 + 1 ) , ( 𝑧 𝐹 𝑤 ) 〉 ) |
| 55 | opex | ⊢ 〈 ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) + 1 ) , ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) 𝐹 ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) ) 〉 ∈ V | |
| 56 | 46 48 54 55 | ovmpo | ⊢ ( ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ∈ V ∧ ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) ∈ V ) → ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑥 𝐹 𝑦 ) 〉 ) ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) ) = 〈 ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) + 1 ) , ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) 𝐹 ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) ) 〉 ) |
| 57 | 42 43 56 | mp2an | ⊢ ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑥 𝐹 𝑦 ) 〉 ) ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) ) = 〈 ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) + 1 ) , ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) 𝐹 ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) ) 〉 |
| 58 | 41 57 | eqtrdi | ⊢ ( ( ◡ 𝐺 ‘ 𝐵 ) ∈ ω → ( 𝑅 ‘ suc ( ◡ 𝐺 ‘ 𝐵 ) ) = 〈 ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) + 1 ) , ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) 𝐹 ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) ) 〉 ) |
| 59 | 58 | fveq2d | ⊢ ( ( ◡ 𝐺 ‘ 𝐵 ) ∈ ω → ( 2nd ‘ ( 𝑅 ‘ suc ( ◡ 𝐺 ‘ 𝐵 ) ) ) = ( 2nd ‘ 〈 ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) + 1 ) , ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) 𝐹 ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) ) 〉 ) ) |
| 60 | ovex | ⊢ ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) + 1 ) ∈ V | |
| 61 | ovex | ⊢ ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) 𝐹 ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) ) ∈ V | |
| 62 | 60 61 | op2nd | ⊢ ( 2nd ‘ 〈 ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) + 1 ) , ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) 𝐹 ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) ) 〉 ) = ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) 𝐹 ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) ) |
| 63 | 59 62 | eqtrdi | ⊢ ( ( ◡ 𝐺 ‘ 𝐵 ) ∈ ω → ( 2nd ‘ ( 𝑅 ‘ suc ( ◡ 𝐺 ‘ 𝐵 ) ) ) = ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) 𝐹 ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) ) ) |
| 64 | 17 63 | syl | ⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐶 ) → ( 2nd ‘ ( 𝑅 ‘ suc ( ◡ 𝐺 ‘ 𝐵 ) ) ) = ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) 𝐹 ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) ) ) |
| 65 | 1 2 3 4 | uzrdglem | ⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐶 ) → 〈 𝐵 , ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) 〉 ∈ ran 𝑅 ) |
| 66 | 65 5 | eleqtrrdi | ⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐶 ) → 〈 𝐵 , ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) 〉 ∈ 𝑆 ) |
| 67 | funopfv | ⊢ ( Fun 𝑆 → ( 〈 𝐵 , ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) 〉 ∈ 𝑆 → ( 𝑆 ‘ 𝐵 ) = ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) ) ) | |
| 68 | 8 66 67 | mpsyl | ⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐶 ) → ( 𝑆 ‘ 𝐵 ) = ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) ) |
| 69 | 68 | eqcomd | ⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐶 ) → ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) = ( 𝑆 ‘ 𝐵 ) ) |
| 70 | 23 69 | oveq12d | ⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐶 ) → ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) 𝐹 ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) ) = ( 𝐵 𝐹 ( 𝑆 ‘ 𝐵 ) ) ) |
| 71 | 31 64 70 | 3eqtrd | ⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐶 ) → ( 𝑆 ‘ ( 𝐵 + 1 ) ) = ( 𝐵 𝐹 ( 𝑆 ‘ 𝐵 ) ) ) |