This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Successor value of a recursive definition generator on upper integers. See comment in om2uzrdg . (Contributed by Mario Carneiro, 26-Jun-2013) (Revised by Mario Carneiro, 13-Sep-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | om2uz.1 | |- C e. ZZ |
|
| om2uz.2 | |- G = ( rec ( ( x e. _V |-> ( x + 1 ) ) , C ) |` _om ) |
||
| uzrdg.1 | |- A e. _V |
||
| uzrdg.2 | |- R = ( rec ( ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( x F y ) >. ) , <. C , A >. ) |` _om ) |
||
| uzrdg.3 | |- S = ran R |
||
| Assertion | uzrdgsuci | |- ( B e. ( ZZ>= ` C ) -> ( S ` ( B + 1 ) ) = ( B F ( S ` B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | om2uz.1 | |- C e. ZZ |
|
| 2 | om2uz.2 | |- G = ( rec ( ( x e. _V |-> ( x + 1 ) ) , C ) |` _om ) |
|
| 3 | uzrdg.1 | |- A e. _V |
|
| 4 | uzrdg.2 | |- R = ( rec ( ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( x F y ) >. ) , <. C , A >. ) |` _om ) |
|
| 5 | uzrdg.3 | |- S = ran R |
|
| 6 | 1 2 3 4 5 | uzrdgfni | |- S Fn ( ZZ>= ` C ) |
| 7 | fnfun | |- ( S Fn ( ZZ>= ` C ) -> Fun S ) |
|
| 8 | 6 7 | ax-mp | |- Fun S |
| 9 | peano2uz | |- ( B e. ( ZZ>= ` C ) -> ( B + 1 ) e. ( ZZ>= ` C ) ) |
|
| 10 | 1 2 3 4 | uzrdglem | |- ( ( B + 1 ) e. ( ZZ>= ` C ) -> <. ( B + 1 ) , ( 2nd ` ( R ` ( `' G ` ( B + 1 ) ) ) ) >. e. ran R ) |
| 11 | 9 10 | syl | |- ( B e. ( ZZ>= ` C ) -> <. ( B + 1 ) , ( 2nd ` ( R ` ( `' G ` ( B + 1 ) ) ) ) >. e. ran R ) |
| 12 | 11 5 | eleqtrrdi | |- ( B e. ( ZZ>= ` C ) -> <. ( B + 1 ) , ( 2nd ` ( R ` ( `' G ` ( B + 1 ) ) ) ) >. e. S ) |
| 13 | funopfv | |- ( Fun S -> ( <. ( B + 1 ) , ( 2nd ` ( R ` ( `' G ` ( B + 1 ) ) ) ) >. e. S -> ( S ` ( B + 1 ) ) = ( 2nd ` ( R ` ( `' G ` ( B + 1 ) ) ) ) ) ) |
|
| 14 | 8 12 13 | mpsyl | |- ( B e. ( ZZ>= ` C ) -> ( S ` ( B + 1 ) ) = ( 2nd ` ( R ` ( `' G ` ( B + 1 ) ) ) ) ) |
| 15 | 1 2 | om2uzf1oi | |- G : _om -1-1-onto-> ( ZZ>= ` C ) |
| 16 | f1ocnvdm | |- ( ( G : _om -1-1-onto-> ( ZZ>= ` C ) /\ B e. ( ZZ>= ` C ) ) -> ( `' G ` B ) e. _om ) |
|
| 17 | 15 16 | mpan | |- ( B e. ( ZZ>= ` C ) -> ( `' G ` B ) e. _om ) |
| 18 | peano2 | |- ( ( `' G ` B ) e. _om -> suc ( `' G ` B ) e. _om ) |
|
| 19 | 17 18 | syl | |- ( B e. ( ZZ>= ` C ) -> suc ( `' G ` B ) e. _om ) |
| 20 | 1 2 | om2uzsuci | |- ( ( `' G ` B ) e. _om -> ( G ` suc ( `' G ` B ) ) = ( ( G ` ( `' G ` B ) ) + 1 ) ) |
| 21 | 17 20 | syl | |- ( B e. ( ZZ>= ` C ) -> ( G ` suc ( `' G ` B ) ) = ( ( G ` ( `' G ` B ) ) + 1 ) ) |
| 22 | f1ocnvfv2 | |- ( ( G : _om -1-1-onto-> ( ZZ>= ` C ) /\ B e. ( ZZ>= ` C ) ) -> ( G ` ( `' G ` B ) ) = B ) |
|
| 23 | 15 22 | mpan | |- ( B e. ( ZZ>= ` C ) -> ( G ` ( `' G ` B ) ) = B ) |
| 24 | 23 | oveq1d | |- ( B e. ( ZZ>= ` C ) -> ( ( G ` ( `' G ` B ) ) + 1 ) = ( B + 1 ) ) |
| 25 | 21 24 | eqtrd | |- ( B e. ( ZZ>= ` C ) -> ( G ` suc ( `' G ` B ) ) = ( B + 1 ) ) |
| 26 | f1ocnvfv | |- ( ( G : _om -1-1-onto-> ( ZZ>= ` C ) /\ suc ( `' G ` B ) e. _om ) -> ( ( G ` suc ( `' G ` B ) ) = ( B + 1 ) -> ( `' G ` ( B + 1 ) ) = suc ( `' G ` B ) ) ) |
|
| 27 | 15 26 | mpan | |- ( suc ( `' G ` B ) e. _om -> ( ( G ` suc ( `' G ` B ) ) = ( B + 1 ) -> ( `' G ` ( B + 1 ) ) = suc ( `' G ` B ) ) ) |
| 28 | 19 25 27 | sylc | |- ( B e. ( ZZ>= ` C ) -> ( `' G ` ( B + 1 ) ) = suc ( `' G ` B ) ) |
| 29 | 28 | fveq2d | |- ( B e. ( ZZ>= ` C ) -> ( R ` ( `' G ` ( B + 1 ) ) ) = ( R ` suc ( `' G ` B ) ) ) |
| 30 | 29 | fveq2d | |- ( B e. ( ZZ>= ` C ) -> ( 2nd ` ( R ` ( `' G ` ( B + 1 ) ) ) ) = ( 2nd ` ( R ` suc ( `' G ` B ) ) ) ) |
| 31 | 14 30 | eqtrd | |- ( B e. ( ZZ>= ` C ) -> ( S ` ( B + 1 ) ) = ( 2nd ` ( R ` suc ( `' G ` B ) ) ) ) |
| 32 | frsuc | |- ( ( `' G ` B ) e. _om -> ( ( rec ( ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( x F y ) >. ) , <. C , A >. ) |` _om ) ` suc ( `' G ` B ) ) = ( ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( x F y ) >. ) ` ( ( rec ( ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( x F y ) >. ) , <. C , A >. ) |` _om ) ` ( `' G ` B ) ) ) ) |
|
| 33 | 4 | fveq1i | |- ( R ` suc ( `' G ` B ) ) = ( ( rec ( ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( x F y ) >. ) , <. C , A >. ) |` _om ) ` suc ( `' G ` B ) ) |
| 34 | 4 | fveq1i | |- ( R ` ( `' G ` B ) ) = ( ( rec ( ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( x F y ) >. ) , <. C , A >. ) |` _om ) ` ( `' G ` B ) ) |
| 35 | 34 | fveq2i | |- ( ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( x F y ) >. ) ` ( R ` ( `' G ` B ) ) ) = ( ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( x F y ) >. ) ` ( ( rec ( ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( x F y ) >. ) , <. C , A >. ) |` _om ) ` ( `' G ` B ) ) ) |
| 36 | 32 33 35 | 3eqtr4g | |- ( ( `' G ` B ) e. _om -> ( R ` suc ( `' G ` B ) ) = ( ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( x F y ) >. ) ` ( R ` ( `' G ` B ) ) ) ) |
| 37 | 1 2 3 4 | om2uzrdg | |- ( ( `' G ` B ) e. _om -> ( R ` ( `' G ` B ) ) = <. ( G ` ( `' G ` B ) ) , ( 2nd ` ( R ` ( `' G ` B ) ) ) >. ) |
| 38 | 37 | fveq2d | |- ( ( `' G ` B ) e. _om -> ( ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( x F y ) >. ) ` ( R ` ( `' G ` B ) ) ) = ( ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( x F y ) >. ) ` <. ( G ` ( `' G ` B ) ) , ( 2nd ` ( R ` ( `' G ` B ) ) ) >. ) ) |
| 39 | df-ov | |- ( ( G ` ( `' G ` B ) ) ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( x F y ) >. ) ( 2nd ` ( R ` ( `' G ` B ) ) ) ) = ( ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( x F y ) >. ) ` <. ( G ` ( `' G ` B ) ) , ( 2nd ` ( R ` ( `' G ` B ) ) ) >. ) |
|
| 40 | 38 39 | eqtr4di | |- ( ( `' G ` B ) e. _om -> ( ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( x F y ) >. ) ` ( R ` ( `' G ` B ) ) ) = ( ( G ` ( `' G ` B ) ) ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( x F y ) >. ) ( 2nd ` ( R ` ( `' G ` B ) ) ) ) ) |
| 41 | 36 40 | eqtrd | |- ( ( `' G ` B ) e. _om -> ( R ` suc ( `' G ` B ) ) = ( ( G ` ( `' G ` B ) ) ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( x F y ) >. ) ( 2nd ` ( R ` ( `' G ` B ) ) ) ) ) |
| 42 | fvex | |- ( G ` ( `' G ` B ) ) e. _V |
|
| 43 | fvex | |- ( 2nd ` ( R ` ( `' G ` B ) ) ) e. _V |
|
| 44 | oveq1 | |- ( z = ( G ` ( `' G ` B ) ) -> ( z + 1 ) = ( ( G ` ( `' G ` B ) ) + 1 ) ) |
|
| 45 | oveq1 | |- ( z = ( G ` ( `' G ` B ) ) -> ( z F w ) = ( ( G ` ( `' G ` B ) ) F w ) ) |
|
| 46 | 44 45 | opeq12d | |- ( z = ( G ` ( `' G ` B ) ) -> <. ( z + 1 ) , ( z F w ) >. = <. ( ( G ` ( `' G ` B ) ) + 1 ) , ( ( G ` ( `' G ` B ) ) F w ) >. ) |
| 47 | oveq2 | |- ( w = ( 2nd ` ( R ` ( `' G ` B ) ) ) -> ( ( G ` ( `' G ` B ) ) F w ) = ( ( G ` ( `' G ` B ) ) F ( 2nd ` ( R ` ( `' G ` B ) ) ) ) ) |
|
| 48 | 47 | opeq2d | |- ( w = ( 2nd ` ( R ` ( `' G ` B ) ) ) -> <. ( ( G ` ( `' G ` B ) ) + 1 ) , ( ( G ` ( `' G ` B ) ) F w ) >. = <. ( ( G ` ( `' G ` B ) ) + 1 ) , ( ( G ` ( `' G ` B ) ) F ( 2nd ` ( R ` ( `' G ` B ) ) ) ) >. ) |
| 49 | oveq1 | |- ( x = z -> ( x + 1 ) = ( z + 1 ) ) |
|
| 50 | oveq1 | |- ( x = z -> ( x F y ) = ( z F y ) ) |
|
| 51 | 49 50 | opeq12d | |- ( x = z -> <. ( x + 1 ) , ( x F y ) >. = <. ( z + 1 ) , ( z F y ) >. ) |
| 52 | oveq2 | |- ( y = w -> ( z F y ) = ( z F w ) ) |
|
| 53 | 52 | opeq2d | |- ( y = w -> <. ( z + 1 ) , ( z F y ) >. = <. ( z + 1 ) , ( z F w ) >. ) |
| 54 | 51 53 | cbvmpov | |- ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( x F y ) >. ) = ( z e. _V , w e. _V |-> <. ( z + 1 ) , ( z F w ) >. ) |
| 55 | opex | |- <. ( ( G ` ( `' G ` B ) ) + 1 ) , ( ( G ` ( `' G ` B ) ) F ( 2nd ` ( R ` ( `' G ` B ) ) ) ) >. e. _V |
|
| 56 | 46 48 54 55 | ovmpo | |- ( ( ( G ` ( `' G ` B ) ) e. _V /\ ( 2nd ` ( R ` ( `' G ` B ) ) ) e. _V ) -> ( ( G ` ( `' G ` B ) ) ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( x F y ) >. ) ( 2nd ` ( R ` ( `' G ` B ) ) ) ) = <. ( ( G ` ( `' G ` B ) ) + 1 ) , ( ( G ` ( `' G ` B ) ) F ( 2nd ` ( R ` ( `' G ` B ) ) ) ) >. ) |
| 57 | 42 43 56 | mp2an | |- ( ( G ` ( `' G ` B ) ) ( x e. _V , y e. _V |-> <. ( x + 1 ) , ( x F y ) >. ) ( 2nd ` ( R ` ( `' G ` B ) ) ) ) = <. ( ( G ` ( `' G ` B ) ) + 1 ) , ( ( G ` ( `' G ` B ) ) F ( 2nd ` ( R ` ( `' G ` B ) ) ) ) >. |
| 58 | 41 57 | eqtrdi | |- ( ( `' G ` B ) e. _om -> ( R ` suc ( `' G ` B ) ) = <. ( ( G ` ( `' G ` B ) ) + 1 ) , ( ( G ` ( `' G ` B ) ) F ( 2nd ` ( R ` ( `' G ` B ) ) ) ) >. ) |
| 59 | 58 | fveq2d | |- ( ( `' G ` B ) e. _om -> ( 2nd ` ( R ` suc ( `' G ` B ) ) ) = ( 2nd ` <. ( ( G ` ( `' G ` B ) ) + 1 ) , ( ( G ` ( `' G ` B ) ) F ( 2nd ` ( R ` ( `' G ` B ) ) ) ) >. ) ) |
| 60 | ovex | |- ( ( G ` ( `' G ` B ) ) + 1 ) e. _V |
|
| 61 | ovex | |- ( ( G ` ( `' G ` B ) ) F ( 2nd ` ( R ` ( `' G ` B ) ) ) ) e. _V |
|
| 62 | 60 61 | op2nd | |- ( 2nd ` <. ( ( G ` ( `' G ` B ) ) + 1 ) , ( ( G ` ( `' G ` B ) ) F ( 2nd ` ( R ` ( `' G ` B ) ) ) ) >. ) = ( ( G ` ( `' G ` B ) ) F ( 2nd ` ( R ` ( `' G ` B ) ) ) ) |
| 63 | 59 62 | eqtrdi | |- ( ( `' G ` B ) e. _om -> ( 2nd ` ( R ` suc ( `' G ` B ) ) ) = ( ( G ` ( `' G ` B ) ) F ( 2nd ` ( R ` ( `' G ` B ) ) ) ) ) |
| 64 | 17 63 | syl | |- ( B e. ( ZZ>= ` C ) -> ( 2nd ` ( R ` suc ( `' G ` B ) ) ) = ( ( G ` ( `' G ` B ) ) F ( 2nd ` ( R ` ( `' G ` B ) ) ) ) ) |
| 65 | 1 2 3 4 | uzrdglem | |- ( B e. ( ZZ>= ` C ) -> <. B , ( 2nd ` ( R ` ( `' G ` B ) ) ) >. e. ran R ) |
| 66 | 65 5 | eleqtrrdi | |- ( B e. ( ZZ>= ` C ) -> <. B , ( 2nd ` ( R ` ( `' G ` B ) ) ) >. e. S ) |
| 67 | funopfv | |- ( Fun S -> ( <. B , ( 2nd ` ( R ` ( `' G ` B ) ) ) >. e. S -> ( S ` B ) = ( 2nd ` ( R ` ( `' G ` B ) ) ) ) ) |
|
| 68 | 8 66 67 | mpsyl | |- ( B e. ( ZZ>= ` C ) -> ( S ` B ) = ( 2nd ` ( R ` ( `' G ` B ) ) ) ) |
| 69 | 68 | eqcomd | |- ( B e. ( ZZ>= ` C ) -> ( 2nd ` ( R ` ( `' G ` B ) ) ) = ( S ` B ) ) |
| 70 | 23 69 | oveq12d | |- ( B e. ( ZZ>= ` C ) -> ( ( G ` ( `' G ` B ) ) F ( 2nd ` ( R ` ( `' G ` B ) ) ) ) = ( B F ( S ` B ) ) ) |
| 71 | 31 64 70 | 3eqtrd | |- ( B e. ( ZZ>= ` C ) -> ( S ` ( B + 1 ) ) = ( B F ( S ` B ) ) ) |